Pt \(sinx\left(3cosx-2\right)=0\) có bao nhiêu nghiệm thuộc khoảng \(\left(0;3\pi\right)\)
Với giá trị nào của m thì pt \(\left(3cosx-2\right)\left(2cosx+3m-1\right)=0\) có đúng 3 nghiệm phân biệt thuộc khoảng \(\left(0;\frac{3\pi}{2}\right)\)
Sử dụng đường tròn lượng giác, ta thấy \(3cosx-2=0\) có đúng 1 nghiệm thuộc \(\left(0;\frac{3\pi}{2}\right)\)
Vậy để pt đã cho có 3 nghiệm pb thuộc \(\left(0;\frac{3\pi}{2}\right)\) thì \(2cosx+3m-1=0\) có 2 nghiệm pb sao cho \(-1< cosx< 0\)
\(2cosx+3m-1=0\Rightarrow cosx=\frac{1-3m}{2}\)
\(\Rightarrow-1< \frac{1-3m}{2}< 0\Rightarrow\left\{{}\begin{matrix}\frac{3-3m}{2}>0\\\frac{1-3m}{2}< 0\end{matrix}\right.\)
\(\Rightarrow\frac{1}{3}< m< 1\)
Có bao nhiêu m nguyên để pt có nghiệm
a) \(sin^6x+cos^6x+3sinx.cosx-\dfrac{m}{4}+2=0\)
b) \(\left(sinx-1\right)\left[2cos^2x-\left(2m+1\right)cosx+m\right]=0\) có 4 nghiệm phân biệt \(\in\left[0;2\pi\right]\)
a) Pt\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)+3sinx.cosx-\dfrac{m}{4}+2=0\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x-\dfrac{3}{2}sin2x-\dfrac{m}{4}+2=0\)
\(\Leftrightarrow-3sin^22x-6sin2x-m+12=0\)
Đặt \(t=sin2x;t\in\left[-1;1\right]\)
Pttt: \(-3t^2-6t-m+12=0\)
\(\Leftrightarrow-3t^2-6t+12=m\) (1)
Đặt \(f\left(t\right)=-3t^2-6t+12;t\in\left[-1;1\right]\)
Vẽ BBT sẽ tìm được \(f\left(t\right)_{min}=3;f\left(t\right)_{max}=15\)\(\Leftrightarrow3\le f\left(t\right)\le15\)\(\Rightarrow m\in\left[3;15\right]\) thì pt (1) sẽ có nghiệm
mà \(m\in Z\) nên tổng m nguyên để pt có nghiệm là 13 m
Vậy có tổng 13 m nguyên
b) Pt\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(1\right)\\2cos^2x-\left(2m+1\right)cosx+m=0\left(2\right)\end{matrix}\right.\)
Từ (1)\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)
\(x\in\left[0;2\pi\right]\Rightarrow0\le\dfrac{\pi}{2}+k2\pi\le2\pi\)\(\Leftrightarrow-\dfrac{1}{4}\le k\le\dfrac{3}{4}\)\(\Rightarrow k=0\)
Tại k=0\(\Rightarrow x=\dfrac{\pi}{2}\)
Để pt ban đầu có 4 nghiệm pb \(\in\left[0;2\pi\right]\)
\(\Leftrightarrow\) Pt (2) có 3 nghiệm pb khác \(\dfrac{\pi}{2}\)
Xét pt (2) có: \(2cos^2x-\left(2m+1\right)cosx+m=0\)
Vì là phương trình bậc hai ẩn \(cosx\) nên pt (2) chỉ có nhiều nhất ba nghiệm \(\Leftrightarrow\) Pt (2) có một nghiệm cosx=0
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) mà \(x\ne\dfrac{\pi}{2}\)
\(\Rightarrow\) Pt (2) chỉ có nhiều nhất hai nghiệm
\(\Rightarrow\) Pt ban đầu không thể có 4 nghiệm phân biệt
Vậy \(m\in\varnothing\)
pt sinx+cos\(\left(2x+\dfrac{\pi}{3}\right)\)=0 có bao nhiêu nghiệm thỏa mãn \(0\le x\le2\pi\)
\(sinx+cos\left(2x+\dfrac{\Omega}{3}\right)=0\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=-sinx=sin\left(-x\right)\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=cos\left(\dfrac{\Omega}{2}+x\right)\)
=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{3}=x+\dfrac{\Omega}{2}+k2\Omega\\2x+\dfrac{\Omega}{3}=-x-\dfrac{\Omega}{2}+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{6}+k2\Omega\\3x=-\dfrac{5}{6}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{5}{6}\Omega+k2\Omega\\x=-\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)
TH1: \(x=\dfrac{5}{6}\Omega+k2\Omega\)
\(0< =x< =2\Omega\)
=>\(0< =\dfrac{5}{6}\Omega+k2\Omega< =2\Omega\)
=>\(-\dfrac{5}{6}\Omega< =k2\Omega< =\dfrac{7}{6}\Omega\)
=>\(-\dfrac{5}{6}< =2k< =\dfrac{7}{6}\)
=>-5/12<=k<=7/12
mà k nguyên
nên k=0
TH2: \(x=-\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\)
\(0< =x< =2\Omega\)
=>\(0< =-\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}< =2\Omega\)
=>\(\dfrac{5}{18}\Omega< =\dfrac{k2\Omega}{3}< =\dfrac{41}{18}\Omega\)
=>\(\dfrac{5}{18}< =\dfrac{2k}{3}< =\dfrac{41}{18}\)
=>\(\dfrac{5}{6}< =2k< =\dfrac{41}{6}\)
=>\(\dfrac{5}{12}< =k< =\dfrac{41}{12}\)
mà k nguyên
nên \(k\in\left\{1;2;3\right\}\)
=>Có 4 nghiệm thỏa mãn
Ptrinh \(\left(2cos2x-1\right)\left(3cosx+1\right)=0\) có bao nhiêu nghiệm thuộc khoảng \(\left(-\frac{\pi}{4};\frac{\pi}{2}\right)\)
Với \(x\in\left(-\frac{\pi}{4};\frac{\pi}{2}\right)\Rightarrow cosx>0\Rightarrow3cosx+1>0\)
Do đó pt tương đương:
\(2cos2x-1=0\Rightarrow cos2x=\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Pt có 2 nghiệm thuộc khoảng đã cho là \(x=\left\{-\frac{\pi}{6};\frac{\pi}{6}\right\}\)
1. Pt: \(sin^22x-2cos^2x+\frac{3}{4}=0\) có nghiệm là?
2. Số nghiệm của pt: \(2cos2x+2cosx-\sqrt{2}=0\) thỏa đk: \(\frac{-\pi}{2}< x< \frac{5\pi}{2}\)?
3. Số nghiệm của pt: \(2tanx-2cotx-3=0\) trong khoảng: \(\left(\frac{-\pi}{2};\pi\right)\) là?
4. Nghiệm âm lớn nhất của pt: \(\frac{\sqrt{3}}{sin^2x}=3cotx+\sqrt{3}\) là?
5. Tổng các nghiệm của pt: \(\sqrt{3}tan^2x-\left(3+\sqrt{3}\right)tanx+3=0\) trong: \(\left(-2019\pi;2019\pi\right)\) thuộc khoảng nào trong các khoảng sau?
a. \(\left(-\infty;-3\right)\) b. \(\left(-3;5\right)\) c. (5;20) d. \(\left(20;+\infty\right)\)
6. Pt: 1 + sinx - cosx - sin2x = 0 có bao nhiêu nghiệm trên: \(\left[0;\frac{\pi}{2}\right]\)?
7. Tổng các nghiệm của pt: \(sinxcosx+\left|cosx+sinx\right|=1\) trên \(\left(0;2\pi\right)\) là?
1.
\(\Leftrightarrow1-cos^22x-2\left(\frac{1+cos2x}{2}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow-cos^22x-cos2x+\frac{3}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\pm\frac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi\)
2.
\(2\left(2cos^2x-1\right)+2cosx-\sqrt{2}=0\)
\(\Leftrightarrow4cos^2x+2cosx-2-\sqrt{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{2}}{2}\\cosx=-\frac{1+\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+l2\pi\end{matrix}\right.\) mà \(-\frac{\pi}{2}< x< \frac{5\pi}{2}\Rightarrow\left\{{}\begin{matrix}-\frac{\pi}{2}< \frac{\pi}{4}+k2\pi< \frac{5\pi}{2}\\-\frac{\pi}{2}< -\frac{\pi}{4}+l2\pi< \frac{5\pi}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=0;1\\l=0;1\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{4};\frac{9\pi}{4};-\frac{\pi}{4};\frac{7\pi}{4}\right\}\)
Có 4 nghiệm
3. ĐKXĐ: ...
\(2tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow2tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\frac{1}{2}\\tanx=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-\frac{1}{2}\right)+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.\)
Có 3 nghiệm trong khoảng đã cho \(x=arctan\left(-\frac{1}{2}\right);x=arctan\left(-\frac{1}{2}\right)+\pi;x=arctan\left(2\right)\)
4. ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)
\(\Leftrightarrow cot^2x-\sqrt{3}cotx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Nghiệm âm lớn nhất của pt là \(x=-\frac{\pi}{2}\)
5. ĐKXĐ; ...
\(\Leftrightarrow tan^2x-\left(1+\sqrt{3}\right)tanx+\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+l\pi\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2019\pi< \frac{\pi}{4}+k\pi< 2019\pi\\-2019\pi< \frac{\pi}{3}+l\pi< 2019\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2019\le k\le2018\\-2019\le l\le2018\end{matrix}\right.\)
Tổng các nghiệm: \(2.\left(-2019\pi\right)+4038\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=-\frac{3365\pi}{2}< -3\)
Đáp án A đúng
Cho phương trình (cosx-1)(sinx+m)=0. Tìm các giá trị m để pt có đúng 2 nghiệm phân biệt thuộc \(\left[0;\pi\right]\)
giai pt sau : \(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right).cosx=0\)
Biến đổi pt trên như sau:
sinx.cosx/4 + cosx.sinx/4 - 3(sin2x + cos2x) + cosx = 0
sin(x + x/4) + cosx = 3
sin5x/4 + cosx = 3
Vì sin5x/4 \(\le\) 1 và cosx \(\le\) 1. Do đó sin5x/4 + cosx \(\le\) 2. Vì vậy pt trên vô nghiệm.
Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\)
Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).
Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).
Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?
Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.
Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là?
Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?
Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?
Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?
Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?
1.
\(cos2x-3cosx+2=0\)
\(\Leftrightarrow2cos^2x-3cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn
\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)
\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)
2.
\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)
Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)
Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)
TH1: \(m=2\)
\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)
\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán
TH2: \(m=3\)
\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)
\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán
TH3: \(m=1\)
\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
Vậy \(m=2;m=3\)
3.
\(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\)
\(\Leftrightarrow2cos^2\dfrac{x}{4}+3cos\dfrac{x}{4}-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{x}{4}=\dfrac{1}{2}\\cos\dfrac{x}{4}=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\dfrac{4\pi}{3}+k8\pi\in\left[0;8\pi\right]\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4\pi}{3}\\x=\dfrac{20\pi}{3}\end{matrix}\right.\)
\(\Rightarrow T=\dfrac{4\pi}{3}+\dfrac{20\pi}{3}=8\pi\)
giai pt sau : \(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right).cosx=0\)
\(pt\Leftrightarrow\cos\frac{x}{4}\sin x+\cos x+\sin\frac{x}{4}\cos x=3\left(\sin^2x+\cos^2x\right)=3\)
Mà \(\sin\alpha;\text{ }\cos\alpha\le1\forall\alpha\)
\(\Rightarrow\cos\frac{x}{4}.\sin x\le1.1;\text{ }\sin\frac{x}{4}.\cos x\le1.1;\text{ }\cos x\le1\forall x\)
\(\Rightarrow\cos\frac{x}{4}.\sin x+\sin\frac{x}{4}.\cos x+\cos x\le3\text{ }\forall x\)
Dấu "=" xảy ra khi \(\cos x=1;\text{ }\cos\frac{x}{4}.\sin x=1;\text{ }\cos x.\sin\frac{x}{4}=1\)
\(\Leftrightarrow\cos x=1;\text{ }\sin\frac{x}{4}=1;\text{ }\cos\frac{x}{4}.\sin x=1\)
Pt trên vô nghiệm do \(\cos x=1\text{ thì }\sin x=0\Rightarrow\cos\frac{x}{4}.\sin x=0\)
Vậy phương trình đã cho vô nghiệm.