Những câu hỏi liên quan
LT
Xem chi tiết
DV
Xem chi tiết
NT
5 tháng 3 2022 lúc 18:06

a: \(\Leftrightarrow2x^2-2-3>-5x+\left(2x+1\right)\left(x-3\right)\)

\(\Leftrightarrow2x^2-5>-5x+2x^2-6x+x-3\)

\(\Leftrightarrow2x^2-5>2x^2-10x-3\)

=>-5>-10x-3

=>5<10x+3

=>10x+3>5

=>10x>2

hay x>1/5

b: \(\Leftrightarrow x^2-6x+9+8-4x>x+7\)

\(\Leftrightarrow x^2-10x+17-x-7>0\)

\(\Leftrightarrow x^2-11x+10>0\)

=>x>10 hoặc x<1

Bình luận (0)
PT
5 tháng 3 2022 lúc 18:28

a: ⇔2x2−2−3>−5x+(2x+1)(x−3)⇔2x2−2−3>−5x+(2x+1)(x−3)

⇔2x2−5>−5x+2x2−6x+x−3⇔2x2−5>−5x+2x2−6x+x−3

⇔2x2−5>2x2−10x−3⇔2x2−5>2x2−10x−3

=>-5>-10x-3

=>5<10x+3

=>10x+3>5

=>10x>2

hay x>1/5

b: ⇔x2−6x+9+8−4x>x+7⇔x2−6x+9+8−4x>x+7

⇔x2−10x+17−x−7>0⇔x2−10x+17−x−7>0

⇔x2−11x+10>0⇔x2−11x+10>0

=>x>10 hoặc x<1

Bình luận (0)
DV
Xem chi tiết
NT
4 tháng 3 2022 lúc 22:09

a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)

\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)

=>3x-5<=30x-100

=>30x-100>3x-5

=>27x>95

hay x>95/27

b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)

=>26x-8<-11x

=>37x<8

hay x<8/37

Bình luận (0)
H24
Xem chi tiết
CC
21 tháng 5 2018 lúc 9:51

c) Đặt \(t=\sqrt{\left(x-3\right)\left(8-x\right)}\left(t\ge0\right)=\sqrt{-x^2+11x-24}\Rightarrow t^2-2=-x^2+11x-26\)

\(\left(1\right)\Rightarrow t\ge t^2-2\Leftrightarrow t^2-t-2\le0\Leftrightarrow-1\le t\le2\Rightarrow0\le t\le2\Rightarrow0\le-x^2+11x-24\le4\Leftrightarrow\left\{{}\begin{matrix}3\le x\le8\\\left[{}\begin{matrix}x\le4\\x\ge7\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\le x\le4\\7\le x\le8\end{matrix}\right.\)

Vậy tập nghiệm của bpt là \([3;4]\cup[7;8]\)

Bình luận (0)
H24
Xem chi tiết
H24
25 tháng 2 2021 lúc 9:39

$\begin{cases}|x^2-5x+4|>x-1\\x>1\\\end{cases}$

$\to \begin{cases}(x^2-5x+4)^2>(x-1)^2\\x>1\\\end{cases}$

$\to \begin{cases}(x-1)^2(x-4)^2>(x-1)^2\\x>1\\\end{cases}$

$\to \begin{cases}(x-1)^2[(x-4)^2-1]>0\\x>1\\\end{cases}$

$\to \begin{cases}(x-4)^2-1>0\\x>1\\\end{cases}$

$\to \begin{cases}(x-5)(x-3)>0\\x>1\\\end{cases}$

$\to \begin{cases}\left[ \begin{array}{l}x>5\\x<3\end{array} \right.\\x>1\\\end{cases}$

$\to \left[ \begin{array}{l}1<x<3\\x>5\end{array} \right.$

Vậy bất phương trình có tập nghiệm $S=(1,3]∩(5,∞]$

Bình luận (0)
CA
Xem chi tiết
HM
27 tháng 5 2020 lúc 17:49

bình phương lên để mất căn rồi lập bảng xét dấu nha bạn

Bình luận (0)
CX
Xem chi tiết
BH
Xem chi tiết
ND
30 tháng 3 2018 lúc 21:41

Hỏi đáp Toán

Bình luận (0)
PT
30 tháng 3 2018 lúc 21:12

Dài quá c ơi :<

Bình luận (0)
ND
30 tháng 3 2018 lúc 21:39
https://i.imgur.com/6IFAqMM.jpg
Bình luận (0)
SN
Xem chi tiết
TL
16 tháng 4 2018 lúc 17:37

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

Bình luận (0)