Giải pt sau đây:
\(\frac{1}{x-2}-\frac{x^2-4x}{4-x^2}=0\)
giải các pt sau:
a, \(\left(x^2+4x+8\right)^2+3x.\left(x^2+4x+8\right)+2x^2=0\) 0
b, \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
b) \(\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\dfrac{x-2022}{2017}+\dfrac{x-2002}{2020}=\dfrac{x-2022}{2016}+\dfrac{x-2022}{1954}\)
\(\Leftrightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
\(\Leftrightarrow x-2022=0\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\right)\)
\(\Leftrightarrow x=2022\)
1.giải các pt sau:
a, (2x+1).(3x-2)=(2x+1).(5x-8)
b,\(\frac{3}{x+2}\)+\(\frac{2}{x-4}\)=0
c,x3+4x2+4x+3=0
d,\(\frac{x+2}{x-2}\)- \(\frac{x-2}{x+2}\)=\(\frac{4}{x^2-4}\)
e,\(\frac{x^2-9}{x+3}\)=0
f,(x-2)6-19(x-2)3=216
g,\(\frac{1}{x+2}\)+\(\frac{1}{x^2-2x}\)=\(\frac{4}{x^3-4x}\)
Mong ae giải nhanh giùm hehe....
a) \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)
Vậy...
b) \(ĐKXĐ:\) \(x\ne-2;\) \(x\ne4\)
\(\frac{3}{x+2}+\frac{2}{x-4}=0\)
\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Rightarrow\)\(5x-8=0\)
\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)
Vậy...
c) \(x^3+4x^2+4x+3=0\)
\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)
\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x+3=0\) (do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))
\(\Leftrightarrow\)\(x=-3\)
Vậy...
có thể làm giùm 3 câu còn lại ko bn:)
giải pt:
1, \(\frac{x}{x^2-1}+\frac{3}{x^2-2x-3}=\frac{x}{x^2-4x+3}\)
2, ( x+2 ) ( x+4 ) ( x+6 ) (x+8 ) +16 = 0
3, ( x+2 ) ( x+3 ) (x+4 ) ( x+ 15 ) -24 = 0
1) \(\frac{x}{x^2-1}+\frac{3}{x^2-2x-3}=\frac{x}{x^2-4x+3}\)
\(\Leftrightarrow\frac{x}{\left(x+1\right)\left(x-1\right)}+\frac{3}{\left(x-3\right)\left(x+1\right)}=\frac{x}{\left(x-3\right)\left(x-1\right)}\)
\(\Leftrightarrow x\left(x-3\right)+3\left(x-1\right)=x\left(x+1\right)\)
\(\Leftrightarrow x^2-3=x^2+x\)
\(\Leftrightarrow-3=x\)
\(\Leftrightarrow x=-3\)
Vậy: nghiệm phương trình là -3
\(3,\text{ }\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Rightarrow\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=0-16\)
\(\Rightarrow\text{ Có lẻ thừa số âm }\)
Mà \(\left(x+8\right)>\left(x+6\right)>\left(x+4\right)>\left(x+2\right)\)
Ta có hai trường hợp :
\(TH\text{ }1\text{ :}\) Có một thừa số âm
\(\Rightarrow\text{ }\left(x+2\right)< 0\)
\(\Rightarrow\text{ }x< -2\)
\(TH\text{ }2\text{ : }\) Có 3 thừa số âm
\(\Rightarrow\text{ }\hept{\begin{cases}\left(x+2\right)< 0\\\left(x+4\right)< 0\\\left(x+6\right)< 0\end{cases}}\) \(\Rightarrow\text{ }\left(x+2\right)< 0\text{ }\Rightarrow\text{ }x< -2\)
Si thì thôi nha ! Mong bạn thông cảm !
Bài 1 Trong các cặp pt sau pt nào là pt tương dương
a 3x - 5 = 0 và (3x - 5)(x + 2) = 0
b x2 + 1 = 0 và 3(x+1) = 3x - 9
c 2x - 3 =0 và x/5 + 1 = 13/10
Bài 2 Giải các pt sau
a 4x - 1 = 3x - 2
b 3x + 7 = 8x - 12
c 1,2 - ( x - 0,8) = -2(0,9 + x)
d 2,3x - 2(0,7 +2x) = 3,6 - 1,7x
e \(\frac{5x-4}{2}=\frac{16x+1}{7}\)
f \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
g \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
h \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
Bài 3 Giải các pt sau
a (x - 1)2 - 9 = 0
b (2x - 1)2 - (x + 3)2 = 0
c 2x2 - 9x + 7 = 0
d x3 - x2 - x + 1 = 0
e (x - 1)(5x + 3) = (3x - 8)(x - 1)
f x2 - 5 = \(\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
g (x + 2)(3 - 4x) = x2 + 4x + 4
h x3 + x2 + x + 1 = 0
Bài 4 Cho pt (m +1)x - 3m = 8
a Giải pt sau khi m = 3
b Với giá trị nào của m thì pt sau vô nghiệm
giải các pt sau
a)5X(X-2020)+X=2020
b)4(X-5)2-(2X+1)2=0
c)\(\frac{3X}{5}-\frac{2X+1}{3}=2-\frac{X-3}{15}\)
d)5X3+10X2+5X=0
e)2X3-8X=0
f)\(\frac{X^2+5}{25-X^2}=\frac{3}{X+5}+\frac{X}{X-5}\)
g)\(\frac{4}{2X-3}-\frac{4X}{9-4X^2}=\frac{1}{2X+3}\)
h)|2X-4|-15=1
i)20-3|2X+1|=17
k)|4X+2|-1,5=1
GIẢI GIÚP MÌNH NHANH VỚI NHA
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(a,5x\left(x-2020\right)+x=2020\)
\(< =>5x\left(x-2020\right)+x-2020=0\)
\(< =>\left(5x+1\right)\left(x-2020\right)=0\)
\(< =>\orbr{\begin{cases}5x+1=0\\x-2020=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=2020\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=2020\end{cases}}}\)
\(b,4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(< =>4\left(x^2-20x+25\right)-\left(4x^2+4x+1\right)=0\)
\(< =>4x^2-80x+100-4x^2-4x-1=0\)
\(< =>-84x+99=0< =>84x=99< =>x=\frac{99}{84}\)
Giải các pt sau :
1/ ( 3x – 2 )( 4x +5 ) = 0
2/ 5(2x – 3) – 4( 5x -7 ) = 19 - 2( x +11)
3/ ( x2 – 2x + 1 ) – 4 = 0
4/ ( x - 1) 2 + ( x+ 3) 2 = 2 ( x -2 ) (x +1 ) + 38
5/ \(\frac{4x+3}{2}-2+3x=\frac{2x-1}{10}+\frac{19x+2}{5}-1\)
6/ \(\frac{2x+4}{5}+\frac{2x-12,4}{6}-\frac{x+3}{10}=4\)
Giúp mình với mọi người ơi !!!
1,(3x-2)(4x+5)=0
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\4x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-5}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là ...
2,\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow10x-20x+2x=15-28+19-22\)
\(\Leftrightarrow-8x=-16\)
=> x= 2
vậy..
3,\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\right)-4=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}-4=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{13}{4}=0\) ( vô nghiệm )
(vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{13}{4}\ge0\) )
từ đó suy ra phương trình vô nghiệm
5,\(\frac{4x+3}{2}-2+3x=\frac{2x-1}{10}+\frac{19x+2}{5}-1\)
\(\Leftrightarrow\frac{5\left(4x+3\right)}{10}-\frac{10\left(2-3x\right)}{10}=\frac{2x-1}{10}+\frac{2\left(19x+2\right)}{10}-\frac{10}{10}\)
\(\Leftrightarrow\frac{20x+15}{10}-\frac{20-30x}{10}=\frac{2x-1}{10}+\frac{38x+4}{10}-\frac{10}{10}\)
\(\Rightarrow20x+15-20+30x=2x-1+38x+4-10\)
\(\Leftrightarrow20x+30x-2x-38x=-15+20-1+4-10\)
\(\Leftrightarrow10x=-2\)
\(\Leftrightarrow x=-5\)
Vậy ....
p/s : thực ra mk cx chỉ ms học th nên giải bài tập về phương trình vẫn còn nhiều chỗ sai nữa,có gì mong mn giúp đỡ :)
1) Giải các pt:
\(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)
2) Giải các pt tích:
a) (x +4)(x - 1)= 0
b) (3x - 2)(4x - 7)= 0
c) (x + 5)(x\(^2\)+1)=0
d) x(x - 1)(x\(^2\) + 4)= 0
e) (3x + 2) (x + \(\frac{1}{2}\))= 0
f) (x + 2) (x - 3) (x\(^2\) + 7)= 0
Bài 2 :
a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)
c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)
=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)
d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)
e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)
=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)
f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)
=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)
Bài 1 :
a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)
=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)
=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)
=> \(12-3x-9-2x+4=0\)
=> \(-5x=-7\)
=> \(x=\frac{7}{5}\)
Giải pt
\(\frac{x^2+x+1}{x+1}+\frac{x^2+2x+2}{x+2}=\frac{x^2+3x+3}{x+3}+\frac{x^2+4x+4}{x+4}\)
\(x\ne\left\{-4;-3;-2;-1\right\}\)
\(\Leftrightarrow\frac{x^2+x+1}{x+1}-1+\frac{x^2+2x+2}{x+2}-1=\frac{x^2+3x+3}{x+3}-1+\frac{x^2+4x+4}{x+4}-1\)
\(\Leftrightarrow\frac{x^2}{x+1}+\frac{x^2+x}{x+2}-\frac{x^2+2x}{x+3}-\frac{x^2+3x}{x+4}=0\)
\(\Leftrightarrow x\left(\frac{x}{x+1}+\frac{x+1}{x+2}-\frac{x+2}{x+3}-\frac{x+3}{x+4}\right)=0\)
\(\Leftrightarrow x\left(1-\frac{1}{x+1}+1-\frac{1}{x+2}+\frac{1}{x+3}-1+\frac{1}{x+4}-1\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x+3}+\frac{1}{x+4}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x+3}-\frac{1}{x+1}=\frac{1}{x+2}-\frac{1}{x+4}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{-2}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow2x^2+10x+11=0\Rightarrow x=\frac{-5\pm\sqrt{3}}{2}\)
giải các pt sau:
a, \(\left(x^2+4x+8\right)^2+3x.\left(x^2+4x+8\right)+2x^2=0\) 0
b, \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
b) \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)
\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)
\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)
\(\Leftrightarrow\)\(x-2022=0\) (vì 1/2017 + 1/2020 - 1/2016 - 1/1954 \(\ne0\))
\(\Leftrightarrow\)\(x=2022\)
Vậy...
b) \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)
\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)
\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)
\(\Leftrightarrow\)\(x-2022=0\) (vì 1/2017 + 1/2020 - 1/2016 - 1/1954 \(\ne0\))
\(\Leftrightarrow\)\(x=2022\)
Vậy,....