Chứng minh với mọi n ∈ N; n > 1 ta có \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}\)
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8
Chứng minh theo quy nạp
Dãy số Fn=2^2^n +1 với n thuộc N gọi là các số fermat
a) Chứng minh Fn=F0F1.....Fn-1 +2 với mọi n nguyên dương
b) Từ đó chứng minh (Fm,Fn)=1 với mọi m khác n nguyên dương
a) Chứng minh rằng : 13n+1-13n chia hết cho 12 với mọi số tự nhiên n
b) Chứng minh rằng n3-n chia hết cho 6 với mọi giá trị nguyên n
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
Chứng minh theo quy nạp
Dãy số Fn=2^2^n +1 với n thuộc N gọi là các số Fermat
a) Chứng minh Fn=F0F1....Fn-1 +2 với mọi n nguyên dương
b) Từ đó chứng minh (Fm,Fn)=1 với mọi m khác n nguyên dương
Chứng minh: n^2+n+2015 lẻ với mọi n
TH1: Nếu n lẻ
=> n2 lẻ
=> n2 + n = Chẵn
mà 2015 lẻ
=> n2 + n + 2015 lẻ
TH2: Nếu n chẵn
=> n2 chẵn
=> n2 + n = Chẵn
mà 2015 lẻ
=> n2 + n + 2015 lẻ
=> n2 + n + 2015 lẻ với mọi n (Đpcm)
(+) n là số lẻ (1)
=> n^2 là số lẻ (2)
Từ (1) và (2)=> n^2 + n là số chẵn
=> n^2 + n + 2015 tận cùng là số lẻ
(+) n là số chẵn
=> n^2 cũng là số chẵn
=> n^2 + n là số chẵn => n^2 + n + 2015 là số lẻ ( chẵn + lẻ = lẻ ; 2015 là số lẻ)
ĐÚng cho mình nha
Chứng minh n^3 - n chia hết cho 6 với mọi n
chứng minh rằng: với mọi n \(\ge\) 1
\(n^n\)\(\ge\) (n+1)n-1
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
1] N^2 là số lẽ thì n là số lẽ. Chứng minh phản chứng với mọi n > 0
2] N^2 chia hết cho 3 thì n chia hết cho 3. Với mọi n >O
Giả sử n2 và n là số lẻ
Ta có n2 = n.n
Vì n lẻ nên n.n là số lẻ
=> n2 lẻ (trái giả thiết)
Vậy n2 lẻ thì n lẻ
bài còn lại làm tương tự
1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.
Khi đó, n = 2k (k thuộc N*)
Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.
Vậy điều phản chứng sai. Ta có đpcm
2/ Tương tự.