LH
1 trong ko gian oxyz, cho 2 điểm A(1;-2;-3) và B(3;0;1). Phương trình mặt cầu đường kính AB là 2 Trong ko gian oxyz, cho ba điểm A (1;2;1) B(3;1;0),C (3;-1;2) .Phương ttrinh chính tắc của đường thẳng vuông góc với mặt phẳng (ABC) tại A là 3 trong ko gian oxyz, vecto nào sau đây là véc tơ pháp tuyến của mp đi qua ba điểm A(2;-1;4) B(1;0;1),C(4;1;6) A overline{n}left(1;1;2right) overline{n}left(1;1;2right) B overline{N}left(-2;1;1right) C overline{N}left(1;1;-1right)...
Đọc tiếp

Những câu hỏi liên quan
LH
Xem chi tiết
NL
16 tháng 5 2020 lúc 21:55

1.

\(\left\{{}\begin{matrix}a+bi+a-bi=10\\\sqrt{a^2+b^2}=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a^2+b^2=169\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=5\\b=12\end{matrix}\right.\)

2.

\(\left(-2+i\right)^2+a\left(-2+i\right)+b=0\)

\(\Leftrightarrow3-4i-2a+ai+b=0\)

\(\Leftrightarrow\left(-2a+b+3\right)+\left(a-4\right)i=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b+3=0\\a-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)

3.

\(z^2+2z+8=0\Rightarrow\left[{}\begin{matrix}z_1=-1+7i\\z_2=-1-7i\end{matrix}\right.\)

\(\Rightarrow w=10+2\sqrt{7}i\)

Bình luận (0)
NL
16 tháng 5 2020 lúc 22:00

4.

\(z^4-z^2-12=0\Rightarrow\left[{}\begin{matrix}z=4\\z=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}z=2\\z=-2\\z=i\sqrt{3}\\z=-i\sqrt{3}\end{matrix}\right.\) \(\Rightarrow T=4+2\sqrt{3}\)

5.

\(\overrightarrow{NM}=\left(3;-3;2\right)\Rightarrow MN=\sqrt{3^2+3^2+2^2}=\sqrt{22}\)

6.

\(\overrightarrow{AB}=\left(4;-2;6\right)\Rightarrow R=\frac{AB}{2}=\frac{1}{2}\sqrt{4^2+2^2+6^2}=\sqrt{14}\)

Gọi I là trung điểm AB \(\Rightarrow I\left(-1;0;-1\right)\)

Pt mặt cầu:

\(\left(x+1\right)^2+y^2+\left(z+1\right)^2=14\)

Bình luận (0)
NL
16 tháng 5 2020 lúc 22:07

7.

\(R=d\left(I;Oy\right)=\sqrt{x_I^2+z_I^2}=5\)

Pt mặt cầu:

\(\left(x-3\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=25\)

8.

Đường thẳng d qua điểm \(M\left(0;-1;2\right)\) và nhận \(\overrightarrow{u}=\left(1;-1;-1\right)\) là 1 vtcp

\(\overrightarrow{MI}=\left(1;4;3\right)\)

\(\Rightarrow R=d\left(I;d\right)=\frac{\left|\left[\overrightarrow{u};\overrightarrow{MI}\right]\right|}{\left|\overrightarrow{u}\right|}=\frac{\left|\left(-1;4-;5\right)\right|}{\left|\left(1;-1;-1\right)\right|}=\sqrt{14}\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=14\)

Bình luận (0)
LH
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 5 2018 lúc 5:33

Bình luận (0)
PT
Xem chi tiết
PB
Xem chi tiết
CT
23 tháng 10 2017 lúc 6:06

Bình luận (0)
TD
Xem chi tiết
NL
17 tháng 9 2021 lúc 20:09

1.

Gọi \(M\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y;-3-z\right)\\\overrightarrow{MB}=\left(-2-x;-y;2-z\right)\end{matrix}\right.\)

\(2\overrightarrow{MA}=\overrightarrow{MB}\Rightarrow\left\{{}\begin{matrix}2-2x=-2-x\\4-2y=-y\\-6-2z=2-z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\\z=-8\end{matrix}\right.\) \(\Rightarrow M\left(4;4;-8\right)\)

Bình luận (0)
NL
17 tháng 9 2021 lúc 20:11

2.

Ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;2;-4\right)\\\overrightarrow{AC}=\left(0;1;c-2\right)\end{matrix}\right.\)

Tam giác ABC vuông tại A \(\Rightarrow AB\perp AC\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Rightarrow-2.0+2.1-4\left(c-2\right)=0\)

\(\Rightarrow c=\dfrac{5}{2}\)

Vậy \(C\left(1;0;\dfrac{5}{2}\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 6 2017 lúc 17:45

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 5 2018 lúc 7:06

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 4 2017 lúc 2:36

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2018 lúc 6:58

Bình luận (0)