Những câu hỏi liên quan
BC
Xem chi tiết
AH
30 tháng 11 2018 lúc 14:14

Lời giải:

Tọa độ trung điểm $M$ của $AB$ là:

\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)

Bình luận (2)
TT
Xem chi tiết
NT
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

Bình luận (0)
XH
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 1 2017 lúc 2:11

Gọi D(x; y)

Ta có A D → = x + 2 ; y  và B C → = 4 ; − 3 .

Vì ABCD là hình bình hành nên A D → = B C →  

x + 2 = 4 y = − 3 ⇔ x = 2 y = − 3 ⇒ D 2 ; − 3 .

Chọn A.

Bình luận (0)
LC
Xem chi tiết
VN
25 tháng 4 2018 lúc 20:00

de ***** tu lam dihihi

Bình luận (0)
VQ
Xem chi tiết
AH
9 tháng 11 2021 lúc 7:56

Lời giải:

$I$ là trung điểm $AB$ nên:
\(\left\{\begin{matrix} \frac{x_A+x_B}{2}=x_I\\ \frac{y_A+y_B}{2}=y_I\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_B=2x_I-x_A\\ y_B=2y_I-y_A\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_B=2.0-1=-1\\ y_B=2(-2)-0=-4\end{matrix}\right.\)

Vậy $B(-1,-4)$

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 8 2018 lúc 16:55

Gọi C= (x, y). Ta có  A B → = 2 ; 1 B C → = x − 3 ; y .

Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C  

⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2  hoặc x = 2 y = 2 .

Với C 1 4 ; − 2  ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.

Với C 2 2 ; 2  ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.

Chọn B.

Bình luận (0)
LT
Xem chi tiết
PD
Xem chi tiết
NL
21 tháng 9 2019 lúc 21:01

Gọi M là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_M=\frac{x_A+x_B}{2}=\frac{1+0}{2}=\frac{1}{2}\\y_M=\frac{y_A+y_B}{2}=\frac{0-2}{2}=-1\end{matrix}\right.\)

\(\Rightarrow M\left(\frac{1}{2};-1\right)\)

Bình luận (0)
HH
21 tháng 9 2019 lúc 21:06

Gọi I là TĐ AB
\(\Rightarrow\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}\\y_I=\frac{y_A+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\frac{1+0}{2}\\y_I=\frac{0-2}{2}\end{matrix}\right.\Rightarrow I\left(\frac{1}{2};-1\right)\)

Bình luận (0)
PD
Xem chi tiết
H24
2 tháng 5 2023 lúc 18:27

Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)

\(\Rightarrow AH:-2x+4y+c'=0\)

AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)

\(\Rightarrow c'=-2\)

\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)

Tọa độ H là nghiệm của hệ phương trình :

\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

Bình luận (0)
LP
2 tháng 5 2023 lúc 18:37

 Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\) 

\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)

 Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)

 Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

Bình luận (0)