Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ND
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
NT
22 tháng 3 2016 lúc 13:45

Cần chứng minh 

\(\overrightarrow{A_1B_1}=\overrightarrow{E_1D_1}\)\(_{ }\overrightarrow{B_1C_1}=\overrightarrow{F_1E_1}\)\(\overrightarrow{C_1D_1}=\overrightarrow{A_1F_1}\)

Ta có :

\(\overrightarrow{OA_1}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}\) ; \(\overrightarrow{OD_1}=\frac{\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}}{3}\) 

\(\overrightarrow{OB_1}=\frac{\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}}{3}\) ; \(\overrightarrow{OE_1}=\frac{\overrightarrow{OE}+\overrightarrow{OF}+\overrightarrow{OA}}{3}\)

Từ đó suy ra :

\(\overrightarrow{A_1B_1}+\overrightarrow{OD_1}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}}{3}=\overrightarrow{0B_1}+\overrightarrow{OE_1}\)

và do đó 

\(\overrightarrow{A_1B_1}=\overrightarrow{E_1D_1}\)

Tương tự ta cũng có \(\overrightarrow{B_1C_1}=\overrightarrow{F_1E_1}\) ,\(\overrightarrow{C_1D_1}=\overrightarrow{A_1F_1}\) => Điều phải chứng minh

 

Bình luận (0)
NH
Xem chi tiết
MA
Xem chi tiết
NL
16 tháng 3 2022 lúc 7:39

a.

\(\Delta_VSAB=\Delta_VSAD\left(c.g.c\right)\Rightarrow AB_1=AD_1\)

\(\Rightarrow SB_1=SD_1\Rightarrow\dfrac{SB_1}{SB}=\dfrac{SD_1}{SD}\)

\(\Rightarrow B_1D_1||BD\) (Talet đảo)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AB_1\)

\(\Rightarrow AB_1\perp\left(SBC\right)\Rightarrow AB_1\perp SC\)

Hoàn toàn tương tự: \(AD_1\perp\left(SCD\right)\Rightarrow AD_1\perp SC\)

\(\Rightarrow SC\perp\left(AB_1D_1\right)\)

b.

\(\left\{{}\begin{matrix}SC\perp AC_1\\SC\perp\left(AB_1D_1\right)\end{matrix}\right.\) \(\Rightarrow AC_1\in\left(AB_1D_1\right)\)

\(\Rightarrow\) 4 điểm \(A;B_1;C_1;D_1\) đồng phẳng

Theo chứng minh câu a, \(AB_1\perp\left(SBC\right)\Rightarrow AB_1\perp B_1C_1\) (1)

\(AD_1\perp\left(SCD\right)\Rightarrow AD_1\perp\left(D_1C_1\right)\)

\(\Rightarrow B_1;D_1\) cùng nhìn \(AC_1\) dưới 1 góc vuông nên tứ giác \(AB_1C_1D_1\) nội tiếp đường tròn đường kính \(AC_1\)

Bình luận (0)
NL
16 tháng 3 2022 lúc 7:46

c.

Gọi E là trung điểm BC

\(\Rightarrow C_1E\) là đường trung bình tam giác SBC

\(\Rightarrow C_1E||SB\Rightarrow\widehat{SB;AC_1}=\widehat{\left(C_1E;AC_1\right)}=\widehat{AC_1E}\)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{3}\)

\(C_1E=\dfrac{1}{2}SB=\dfrac{a\sqrt{3}}{2}\) 

 \(AE=\sqrt{AB^2+BE^2}=\sqrt{AB^2+\left(\dfrac{BC}{2}\right)^2}=\dfrac{a\sqrt{5}}{2}\)

\(\dfrac{1}{AC_1^2}=\dfrac{1}{SA^2}+\dfrac{1}{AC^2}\Rightarrow AC_1=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=a\)

Áp dụng định lý hàm cos cho tam giác \(AEC_1\):

\(cos\widehat{AC_1E}=\dfrac{AC_1^2+C_1E^2-AE^2}{2AC_1.C_1E}=0\Rightarrow\widehat{AC_1E}=90^0\)

Bình luận (0)
NL
16 tháng 3 2022 lúc 7:46

undefined

Bình luận (0)
NL
Xem chi tiết
NH
27 tháng 2 2017 lúc 22:12

1. Ta có \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\left(b+c\right)\left(\dfrac{a}{b+c}\right)+\dfrac{b^2}{c+a}+\left(c+a\right)\left(\dfrac{b}{c+a}\right)+\dfrac{c^2}{a+b}+\left(a+b\right)\left(\dfrac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\) (đpcm).

Bình luận (0)
NH
27 tháng 2 2017 lúc 22:26

2. Ta có: \(\dfrac{a_1}{a_2}+\dfrac{b_1}{b_2}+\dfrac{c_1}{c_2}=0\)

\(\Rightarrow\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_2b_2c_2}=0\)

\(\Rightarrow a_1b_2c_2+b_1a_2c_2+c_1a_2b_2=0\)

Lại có: \(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}=1\)

\(\Rightarrow\left(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}\right)^2=1\)

\(\Rightarrow\dfrac{a_2^2}{a_1^2}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}+2\left(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{a_2c_2}{a_1c_1}\right)=1\)

Mặt khác: \(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{a_2c_2}{a_1c_1}=\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_1b_1c_1}=0\)

Vậy \(\dfrac{a_2^2}{a_1^2}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}=1\) (đpcm)

Bình luận (0)
H24
Xem chi tiết
HM
8 tháng 9 2023 lúc 21:36

Trong tứ giác \(ABCD\) có: \(\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC} = 360^\circ \)

Ta có:

\(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\\)

\(= \left( {180^\circ  - \widehat {DAB}} \right) + \left( {180^\circ  - \widehat {ABC}} \right) + \left( {180^\circ  - \widehat {BCD}} \right) + \left( {180^\circ  - \widehat {ADC}} \right)\\\)

\(= 180^\circ  + 180^\circ  + 180^\circ  + 180^\circ  - \left( {\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC}} \right)\\ \)

\(= 720^\circ  - 360^\circ \\\)

\(= 360^\circ \)

Bình luận (0)