Những câu hỏi liên quan
QP
Xem chi tiết
NL
25 tháng 2 2021 lúc 20:12

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Bình luận (0)
TT
Xem chi tiết
NH
2 tháng 8 2016 lúc 15:22

đây là hệ phương trình hay 2 phương trình khác nhau mà có dấu = lại ghi là các

Bình luận (0)
HN
Xem chi tiết
VT
3 tháng 8 2016 lúc 14:14

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

Bình luận (0)
H24
3 tháng 8 2016 lúc 15:05

bạn ở dưới phải ghi ngoặc nhọn chứ

Bình luận (0)
TD
Xem chi tiết
KK
24 tháng 7 2020 lúc 20:12

\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)

Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)

Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)

Bình luận (0)
 Khách vãng lai đã xóa
LD
24 tháng 7 2020 lúc 20:09

\(x^2+\left(x-1\right)^2\)

\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)

=> Vô nghiệm ( đpcm ) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 7 2020 lúc 20:11

Trả lời :

Do x2 > 0 \(\forall\)x

      (x - 1)2 > 0 \(\forall\)x

=> x2 + (x - 1)2 \(\forall\)x

=> Đa thức vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NA
3 tháng 4 2018 lúc 12:53

không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp

Bình luận (0)
VH
Xem chi tiết
LC
Xem chi tiết
LD
1 tháng 6 2020 lúc 5:31

a) K(x) = -4x2 - 2

\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)

\(-2< 0\)

=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )

b) Q(x) = 2(x+1)+ 7

\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)

7 > 0

=> 2(x+1)+ 7 > 0 => Vô nghiệm ( đpcm )

c) cái này mình chịu nha TvT

Bình luận (0)
 Khách vãng lai đã xóa
FJ
Xem chi tiết
NL
23 tháng 4 2021 lúc 12:02

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

Bình luận (0)
KN
Xem chi tiết