FJ

a) Chứng minh rằng \(\forall\) x, phương trình sau vô nghiệm
\(\left|x-1\right|+\left|2-x\right|=-4x^2+12x-10\)

b)Cho phương trình: \(m^2+m^2x=4m+21-3mx\) (x là ẩn)
Tìm m để phương trình trên có nghiệm dương duy nhất.
 

NL
23 tháng 4 2021 lúc 12:02

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

Bình luận (0)

Các câu hỏi tương tự
DS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
SB
Xem chi tiết
RM
Xem chi tiết
NT
Xem chi tiết
TM
Xem chi tiết
8N
Xem chi tiết