Phân tích đa thức thành nhân tử:
a)16xy^2-12xy+24x^y
b)x^3-x^2-x+1
c)16-x^2+2xy-y^2
d)x^2-x-20
Phân tích đa thức thành nhân tử:
a) 81x5-x3
b) 9x2y-12xy+4y
c) (5-x)2-16(x-2)2
d) 9x2-y2-21x-7y
e) -y2+8y+9x2-16
f) 5x2-4x-1
g) (x+7)(x+9)-17
h) x(x+2)(x+4)(x+6)+15
a: \(81x^5-x^3\)
\(=x^3\left(81x^2-1\right)\)
\(=x^3\left(9x-1\right)\left(9x+1\right)\)
b: \(9x^2y-12xy+4y\)
\(=y\left(9x^2-12x+4\right)\)
\(=y\left(3x-2\right)^2\)
c: \(\left(5-x\right)^2-16\left(x-2\right)^2\)
\(=\left(x-5\right)^2-\left(4x-8\right)^2\)
\(=\left(x-5-4x+8\right)\left(x-5+4x-8\right)\)
\(=-3\left(x-1\right)\left(5x-13\right)\)
d: Ta có: \(9x^2-y^2-21x-7y\)
\(=\left(3x-y\right)\left(3x+y\right)-7\left(3x+y\right)\)
\(=\left(3x+y\right)\left(3x-y-7\right)\)
e: Ta có: \(-y^2+8y-16+9x^2\)
\(=-\left(y^2-8y+16-9x^2\right)\)
\(=-\left(y-4-3x\right)\left(y-4+3x\right)\)
f: Ta có: \(5x^2-4x-1\)
\(=5x^2-5x+x-1\)
\(=5x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(9{x^2} - 16\) b) \(4{x^2} - 12xy + 9{y^2}\) c) \({t^3} - 8\) d) \(2a{x^3}{y^3} + 2a\)
`a, 9x^2 - 16 = (3x+4)(3x-4)`
`b, 4x^2 - 12xy + 9y^2 = (2x-3y)^2`
`c, t^3-8 = (t-2)(t^2 - 2t + 4)`
`d, 2ax^3y^3 + 2a = 2a(x^3y^3 + 1) = 2a(xy+1)(x^2y^2 - xy + 1)`
a) \(\left(9x^2-16\right)=\left(3x-4\right)\left(3x+4\right)\)
b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c) \(t^3-8=\left(t-2\right)\left(t^2+2t+4\right)\)
d) \(2ax^3y^3+2a=2a\left(x^3y^3+1\right)\)
Bài tập 1. Phân tích đa thức thành nhân tử:
a. 5x^2-5x+xy-y
b. x^2-2xy+y^2-9
\(a,=5x\left(x-1\right)+y\left(x-1\right)=\left(5x+y\right)\left(x-1\right)\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
a)5x2-5x+xy-y=(5x2-5x)+(xy-y)=5x(x-1)+y(x-1)=(x-1)(5x+y)
b)x2-2xy+y2-9=(x2-2xy+y2)-9=(x-y)2-32=(x-y-3)(x-y+3)
phân tích đa thức sau thành nhân tử
a\(12x^3y-24x^2y^2+12xy^3\)
b\(x^2-6x+xy-6y\)
c\(2x^2+2xy-x-y\)
d\(ax-2x-a^2+2a\)
e\(x^3-3x^2+3x-1\)
f\(3x^2-3y^2-12x-12y\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - xy + x - y\)
b) \({x^2} + 2xy - 4x - 8y\)
c) \({x^3} - {x^2} - x + 1\)
a) \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+2xy-4x-8y\)
\(=x\left(x+2y\right)-4\left(x+2y\right)\)
\(\left(x-4\right)\left(x+2y\right)\)
c) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2- 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 +2x^3 + 2x^2
d) x^3 + 3x^2 + 3x +1 - 8y^3
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
c) Ta có: \(x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)
d) Ta có: \(x^3+3x^2+3x+1-8y^3\)
\(=\left(x+1\right)^3-\left(2y\right)^3\)
\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2 - 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 + 2x^3 + 2x^2
d) x^3 + 3x^2 + 3x + 1 - 8y^3
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
phân tích đa thức sau thành nhân tử:
a)x^4-y^4
b)x^2-3y^2
c)(3x-2y)^2-4(x+y)^2
d)9(x-y)^2-4(x+y)^2
f)x^3+27
g)27x^3-0,001
h)125x^3-1
\(a,=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\\ b,=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\\ c,=\left[3x-2y-2\left(x+y\right)\right]\left[3x-2y+2\left(x+y\right)\right]\\ =5x\left(x-4y\right)\\ d,=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\\ f,=\left(x+3\right)\left(x^2-3x+9\right)\\ g,=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\\ h,=\left(5x-1\right)\left(25x^2+5x+1\right)\)
\(a)x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)\\ b)x^2-3y^2=\\ c)(3x-2y)^2-4(x+y)^2=(3x-2y)^2-[2(x+y)]^2\\=(3x-2y+2x+2y)(3x-2y-2x-2y)=5x(x-4y)\\ d)9(x-y)^2-4(x+y)^2=[3(x-y)]^2-[2(x+y)]^2=(3x-3y+2x+2y)(3x-3y-2x-2y)\\=(5x-y)(x-5y)\\ f)x^3+27=(x+3)(x^2-3x+9)\\ g)27x^3-0,001=(3x-0,1)(9x+0,3x+0,01)\\ h)125x^3-1=(5x-1)(25x^2+5x+1)\)
Phân tích đa thức sau thành nhân tử:
a. x\(^3\) - 4x\(^2\) + 4x - xz\(^2\)
b. x\(^2\) - 2xy + y\(^2\) - z\(^2\) + 10z - 25
\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)
\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)
\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)
\(x^2-2xy+y^2-z^2+10z-25\)
\(=\left(x-y\right)^2-\left(z-5\right)^2\)
\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)
a. x3 - 4x2 + 4x - xz2
= x(x2 - 4x + 4 ) - z2
= x(x - 4)2 - z2
=x( x - 4 - z ) ( x - 4 + z )
b. x2 - 2xy +y2 - z2 + 10z - 25
= ( x - y )2 - ( z - 5 )2
= ( x - y - z + 5 )(x - y + z - 5 )