cho ΔABC cân tại A . góc BAC =120o nội tiếp đường tròn (O;R) .Tính chu vi và diện tích phần giới hạn bởi AB,AC và cung BC lớn
.
Cho ΔABC cân tại A nội tiếp đường tròn tâm O. Gọi D là tiếp điểm của AC,tia BD cắt tiếp tuyến tại A của đường tròn tâm O ở điểm E, EC cắt đường tròn tâm O tại F,kẻ đường phân giác AH của góc BAC (H ∈ BC)
a) CM: BC song song với AE
b) Tứ giác ABCE là hình gì? Vì sao?
Mình đang cần rất gấp,mn giúp mình với!
Cho ΔABC nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt (O) tại D. Tiếp tuyến tại D cắt (O) cắt 2 đường thẳng AB, AC lần lượt tại E và F. Chứng minh: AB.AF = AC. AE = AD2
Ta có: \(\widehat{CDF}=\widehat{CAD}\) (cùng chắn AD)
\(\widehat{CAD}=\widehat{BAD}\) (AD là phân giác)
\(\widehat{BAD}=\widehat{BCD}\) (cùng chắn BD)
\(\Rightarrow\widehat{CDF}=\widehat{BCD}\)
\(\Rightarrow BC||EF\) (hai góc so le trong bằng nhau)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\Rightarrow AB.AF=AC.AE\)
Cũng từ BC song song EF \(\Rightarrow\widehat{ACB}=\widehat{AFD}\) (đồng vị)
Mà \(\widehat{ACB}=\widehat{ADB}\) (cùng chắn AB)
\(\Rightarrow\widehat{AFD}=\widehat{ADB}\)
Xét 2 tam giác AFD và ADB có:
\(\left\{{}\begin{matrix}\widehat{FAD}=\widehat{DAB}\left(\text{AD là phân giác}\right)\\\widehat{AFD}=\widehat{ADB}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AFD\sim\Delta ADB\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AF}{AD}\Rightarrow AB.AF=AD^2\)
\(\Rightarrow AB.AF=AC.AE=AD^2\)
cho tam giác ABC nội tiếp đường tròn (O,R). Phân giác góc BAC cắt BC tại D và cắt đường tròn (O) tại E.Vẽ đường tròn đường kính AE. Đường thẳng qua D vuông góc với AE cắt đường kinhs AE tại F. chứng minh tam giác EFC cân
Cho ΔABC cân tại A (với AB > BC) nội tiếp đường tròn (O). Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB tại D và E. Hãy
a) Chứng minh:
b) Chứng minh tứ giác BCDE nội tiếp.
c) Chứng minh: BC // DE
a) Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
\(\widehat{DBC}\) là góc tạo bởi dây cung BC và tiếp tuyến BD
Do đó: \(\widehat{BAC}=\widehat{DBC}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
Cho ΔABC có tâm đường tròn nội tiếp I, tâm đường tròn bàng tiếp góc B là J. Biết rằng IC = JC. Chứng minh ∠BAC = 90o
Cho ΔABC cân tại A. Đường vuông góc với AB tại A cắt đường thẳng BC tại E.
a. Chứng minh các tứ giác MCNF và AMNE nội tiếp được trong đường tròn. Xác định tâm các đường tròn này.
b.Chứng minh EB là phân giác của gócAEF.
Điểm M,N,E ở đâu vậy bạn?
cho ΔABC nội tiếp đường tròn tâm (O) , (O') tiếp xúc các cạnh AB , AC tại E và F. (O') tiếp xúc với (O) tại S. gọi I là tâm của đường tròn nội tiếp ΔABC
chứng minh : BEIS , CFIS nội tiếp.
Bài 5: Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R). a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân. b. Tính độ dài các cạnh của tam giác ABC theo R. c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A có góc BAC = 450, nội tiếp đường tròn (O;R). Tia AO cắt đường tròn (O;R) tại D khác A. Lấy điểm M trên cung nhỏ AB (M khác A, B). Dây MD cắt dây BC tại I. Trên tia đối của tia MC lấy điểm E sao cho ME = MB. Đường tròn tâm D bán kính DC cắt MC tại điểm thứ hai K. CM Tứ giác DCKI là tứ giác nội tiếp.
Cho ΔABC cân tại A và nội tiếp trong đường tròn tâm O; đường kình AI. Gọi E là trung điểm của AB, K là trung điểm của OI ; H là trung điểm của EB.
a. Chứng minh HK EB
b. Chứng minh tứ giác AEKC nội tiếp được trong một đường tròn.