tìm m để 2 đg thg \(2x+\left(m^2+1\right)y-3=0\) và x+my-100=0 song song
cho 2 đg thg d1: \(mx+6y-3=0\)
d2: \(x+\left(2m-1\right)y+m=0\)
gọi m1, m2 là 2 gtri m để d1 song song d2 khi m1.m2=?
d1 song song d2 khi:
\(\left\{{}\begin{matrix}m\ne0\\\frac{1}{m}=\frac{2m-1}{6}\ne\frac{m}{-3}\end{matrix}\right.\)
\(\frac{1}{m}=\frac{2m-1}{6}\Rightarrow2m^2-m-6=0\)
\(\Rightarrow\) Theo Viet \(m_1m_2=\frac{-6}{2}=-3\)
Cho (C): \(x^2+y^2-6x+4y-12=0\)
a) Tìm pt đg thg song song d: 3x-4y-2=0 cắt (C) tại 2 điểm A, B mà AB=8
b) Tìm m để Δ: 3x+4y+m=0 là tiếp tuyến của (C)
c) Tìm gđ của (C) và đg thg Δ': \(\left\{{}\begin{matrix}x=3+2t\\y=-2-t\end{matrix}\right.\)
Đường tròn tâm \(I\left(3;-2\right)\) bán kính \(R=5\)
Áp dụng định lý Pitago: \(d\left(I;AB\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=3\)
d' song song d nên pt có dạng: \(3x-4y+c=0\) (với \(c\ne-2\))
\(d\left(I;d'\right)=3\Leftrightarrow\frac{\left|3.3-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)
\(\Leftrightarrow\left|c+17\right|=15\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-32\end{matrix}\right.\)
Vậy pt d': \(3x-4y-32=0\)
b/ \(\Delta\) là tiếp tuyến (C) \(\Leftrightarrow d\left(I;\Delta\right)=R\)
\(\Leftrightarrow\frac{\left|3.3+4.\left(-2\right)+m\right|}{\sqrt{3^2+4^2}}=5\Leftrightarrow\left|m+1\right|=25\Rightarrow\left[{}\begin{matrix}m=24\\m=-26\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y+24=0\\3x+4y-26=0\end{matrix}\right.\)
c/ Thay tọa độ đường thẳng vào pt (C) được:
\(\left(3+2t\right)^2+\left(-2-t\right)^2-6\left(3+2t\right)+4\left(-2-t\right)-12=0\)
\(\Leftrightarrow5t^2-25=0\Rightarrow t=\pm\sqrt{5}\)
Tọa độ giao điểm: \(\left\{{}\begin{matrix}A\left(3+2\sqrt{5};-2-\sqrt{5}\right)\\B\left(3-2\sqrt{5};-2+\sqrt{5}\right)\end{matrix}\right.\)
1. Cho đường tròn (c) : \(x^2+y^2+6x-2y=0\) và đường thẳng d : \(x-3y-4=0\)
Tính tiếp tuyến của (C) song song với (d)
2. Tìm giá trị của m để đường thẳng \(\Delta:3x+4y+3=0\) tiếp xúc với (C) : \(\left(x-m\right)^2+y^2=9\)
3. Xác đinh m để \(\left(C_m\right):x^2+y^2-4x+2\left(m+1\right)y+3m+7=0\) là phương trình của một đường tròn
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
cho 2 đg thg \(d1:mx+y+9=0\) và \(d2:x-2y+m=0\) ( m là tham số ). Tìm m để 2 đường thẳng d1 và d2 song song
\(d_1\) nhận \(\left(m;1\right)\) là 1 vtpt
\(d_2\) nhận \(\left(1;-2\right)\) là 1 vtpt
Để \(d_1\) song song \(d_2\)
\(\Leftrightarrow\frac{m}{1}=\frac{1}{-2}\ne\frac{9}{m}\Rightarrow m=-\frac{1}{2}\)
Trong không gian với hệ trục Oxyz , cho hai mặt phẳng α : x + y - z + 1 = 0 và β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để 2 mp song song
A. m=-2
B. m=5
C. Không tồn tại m
D. m=2
Cho đường thẳng \(\left(\Delta\right)\left(m-3\right)x-\left(m-2\right)y+m-1=0\)
a/ Chứng tỏ \(\left(\Delta\right)\)luôn đi qua điểm cố định A, tìm tọa độ điểm A.
b/Tìm m để
-Đường thẳng song song với Ox
-Đường thẳng song song với Oy
-Đường thẳng song song với \(x-y=0\)
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
Trong không gian với hệ trục tọa độ Oxyz , cho hai mặt phẳng α : x+y-z+1=0 và β : -2x+my+2z-2=0. Tìm m để α và β song song
A. Không tồn tại m
B. m=-2
C. m=2
D. m=5
cho hàm số \(y=x^2-4x+3\). Tìm m để phương trình \(\left|x^2-4x+3\right|+2m=0\)có 4 nghiệm phân biệt? Tìm m để phương trình \(x^2-4\left|x\right|+1+2m^2=0\)có 2 nghiệm song song
Cho đường thẳng \(d:2mx+\left(m-1\right)y-2=0\) và \(d':\left(m+2\right)x+\left(2m+1\right)y-\left(m+2\right)=0\)Tìm m để:
a, 2 đường thẳng cắt nhau
b, 2 đường thẳng song song
c, 2 đường thẳng trùng nhau