A=1/22+1/32+1/42+...+1/20182 và B=75%.
So sánh A và B.
Tổng S = 1 2 . C 2018 1 .2 0 + 2 2 . C 2018 2 .2 1 + 3 2 . C 2018 3 .2 2 + ... + 2018 2 . C 2018 2018 .2 2017 = 2018.3 a . 2. b + 1 với a,b là các số nguyên dương và 2. b + 1 không chia hết cho 3. Tính a + b .
A. 2017
B. 4035
C. 4043
D. 2018
Tổng S = 1 2 . C 2018 1 . 2 0 + 2 2 . C 2018 2 . 2 1 + 3 2 . C 2018 3 . 2 2 + . . . + 2018 2 . C 2018 2018 . 2 2017 = 2018 . 3 a . ( 2 b + 1 ) ,
với a, b là các số nguyên dương và (2b+1) không chia hết cho 3.
Tính a+b.
A. 2017
B. 4035
C. 4034
D. 2018
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
So sánh :
a) A = 2005.2001 và B = 20062
b) B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) và B = 232
c) C = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1) và B = 332 - 1
a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)
Mà B = 20062
=> 20062 - 1 < 20062
=> A < B
b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)
B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1
Mà C = 232
=> B < C
c) Tương tự như câu b
Bài 1:So sánh
a,n/n+5 và n+1/n+4
b,14/55 và 17/69
c,(1/75) mũ 7 và (1/32) mũ 6
bài 1:cho S = 1+2+22+23+...+22023
a. tính tổng
b.cho B = 22024 so sánh S và B
bài 2: tính tổng H=3+32+33+...+32022
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 2
H = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³
⇒2H = 3H - H
= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)
= 3²⁰²³ - 3
⇒ H = (3²⁰²³ - 3) : 2
Không tính giá trị của mỗi biểu thức Hãy so sánh A = 42 x 75 và B= 41×74 + 1 15
Ta có :
\(A=42\times75=\left(41+1\right)\times75=41\times75+75=41\times\left(74+1\right)+75=41\times74+116\)
\(B=41\times75+115\)
\(\Rightarrow A>B\)
BÀI 1: So sánh mà ko tính giá trị của biểu thức
a) 4 336 và 3 448
b) 5 300 và 3 750
Bài 2
a) 12+ 22 + 32 + 42+52 và (1+2+3+4+5)2
b) 13+ 23+33 +43 và (1+2+3+4)3
c) 16 . 5200 và 5202
d) 18 . 4500 và 21004
e) 2022 . 2023 2024 + 20232024 và 20232025
42:x=6
x= 42 :6
X= 7
TH 2
36:x = 6
X = 36: 6
X= 6
So sánh A và B biết :
A= 39/40 và B= 1/ 21 + 1/ 22 + 1/ 23 +.................+ 1/ 79 + 1/ 80
so sánh A và B với A = 1 + 3 + 32 + ... +32022 + 32023 và B = 32024 - 1
A = 1 + 3 + 3² + ... + 3²⁰²³
⇒ 3A = 3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴
⇒ 2A = 3A - A
= (3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴) - (1 + 3 + 3² + ... + 3²⁰²³)
= 3²⁰²⁴ - 1
⇒ A = (3²⁰²⁴ - 1) : 2
⇒ A < B
A=1+3+32+33+34+........+32022+32023
3A=3+32+33+............+32023+32024
3A-A=(3+32+33+..........+32023+32024
A=1+3+32+...+32022+32023
3A=3+32+33+...+32023+32024
3A-A=(3+32+33+...+32023+32024)-(1+3+32+...+32022+32023)
2A=32024-1
A=(32024-1):2
ta thấy 32024-1 lớn hơn (32024-1):2
vậy B lớn A
anh tai sadboy