Tìm GTNN của :
C = 5x2 - 6x + 10
Tìm GTNN của A=5x2-6x+5 trên x2-2x+1.
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)62`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)^2`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
Tìm GTNN của các đa thức sau:
A=5x2-|6x-1|-1
B=9x2-6x-4|3x-1|+6
C=2(x+1)2+3(x+2)2-4(x+3)2
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(C=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\\ C=x^2-8x-22=\left(x^2-8x+16\right)-38=\left(x-4\right)^2-38\ge-38\\ C_{min}=-38\Leftrightarrow x=4\)
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
Tìm GTNN của: M=5x2-2x+7
\(M=5x^2-2x+7=5\left(x^2-\dfrac{2}{5}x+\dfrac{1}{25}\right)+\dfrac{34}{5}\)
\(=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{34}{5}\ge\dfrac{34}{5}\)
\(minM=\dfrac{34}{5}\Leftrightarrow x=\dfrac{1}{5}\)
\(M=5x^2-2x+7\)
=> \(M=5x^2-5\dfrac{2}{5}x+5\dfrac{1}{25}+\dfrac{34}{5}\)
=> \(M=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{34}{5}\)
mà \(5\left(x-\dfrac{1}{5}\right)^2\)≥0 => \(5\left(x-\dfrac{1}{5}\right)^2+\dfrac{34}{5}\)≥\(\dfrac{34}{5}\)
vậy Min M = 34/5 dấu = xảy ra khi x=1/5
Cho các đa thức f(x) = 5x2 – 2x +5 và g(x) = 5x2 – 6x -
a) Tính f(x) + g(x)
b) Tính f(x) – g(x)
c) Tìm nghiệm của f(x) – g(x)
\(a,f\left(x\right)+g\left(x\right)=5x^2-2x+5+5x^2-6x-\dfrac{1}{3}\\ =10x^2-8x+\dfrac{14}{3}\\ b,f\left(x\right)-g\left(x\right)=5x^2-2x+5-5x^2+6x+\dfrac{1}{3}\\ =4x+\dfrac{16}{3}\\ c,f\left(x\right)-g\left(x\right)=4x+\dfrac{16}{3}=0\\ \Leftrightarrow4x=-\dfrac{16}{3}\Leftrightarrow x=-\dfrac{4}{3}\)
Giá trị lớn nhất của phân thức 5 x 2 − 6 x + 10 là
A. 5
B. -5
C. 2
D. -2
Tìm gtnn của x^2+6x-10
x2+6x-10=x2+2.x.3+9+1
=(x+3)2+1
mà (x+3)2\(\ge\)0
=>(x+3)2+1\(\ge\)1
dấu = xảy ra khi x+3=0
=>x=-3
vậy biểu thứ trên đạt gtnn là 1 khi x = -3
x^2+6x-10
<=> (x^2+6x+9)-19
<=>(x+3)^2-19
Vì(x+3)^2\(\ge\)0
-> (x+3)^2-19\(\ge\)-19
Dấu = xẩy ra <=> x+3=0<=>x=3
Vậy GTNN của bt là -19<=> x=-3
Bài 3: (2 điểm) Cho các đa thức f(x) = 5x2 – 2x +5 và g(x) = 5x2 – 6x -
a) Tính f(x) + g(x)
b) Tính f(x) – g(x)
c) Tìm nghiệm của f(x) – g(x)
a) f(x) + g(x) = \(5x^2-2x+5+5x^2-6x-\dfrac{1}{3}=10x^2-8x+\dfrac{14}{3}\)
b) f(x) - g(x) = \(5x^2-2x+5-5x^2+6x+\dfrac{1}{3}=4x+\dfrac{16}{3}\)
c) Ngiệm của f(x) - g(x) chính là nghiệm của \(4x+\dfrac{16}{3}\)
Ta có: \(4x+\dfrac{16}{3}=0\Leftrightarrow4x=-\dfrac{16}{3}\Leftrightarrow x=-\dfrac{4}{3}\)
Vậy nghiệm của f(x) - g(x) là \(-\dfrac{4}{3}\)
Tìm GTNN của B=2x^2+y^2-2xy+6x+10
2x2 + y2 + 2xy - 6x - 2y + 10
= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5
= (x + y - 1)2 + (x - 2)2 + 5 ≥≥ 5
Dấu ''='' xảy ra khi {x+y−1=0x−2=0{x+y−1=0x−2=0 ⇔{y=−1x=2⇔{y=−1x=2
Vậy Min = 5 khi x = 2 và y = - 1
Ta có: \(B=2x^2+y^2-2xy+6x+10\)
\(=x^2-2xy+y^2+x^2+6x+9+1\)
\(=\left(x-y\right)^2+\left(x+3\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=y=-3
Vậy: \(B_{min}=1\) khi (x,y)=(-3;-3)
tìm GTNN của biểu thức A=2x2-2xy-6x+y2+10
`A=2x^2-2xy-6x+y^2+10`
`A=x^2-2xy+y^2+x^2-6x+10`
`A=(x-y)^2+x^2-6x+9+1`
`A=(x-y)^2+(x-3)^2+1`
Vì `(x-y)^2+(x-3)^2>=0=>A>=1`
Dấu "=" xảy ra khi `{(x-y=0),(x-3=0):}<=>x=y=3`
A=\(\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\\ \)
dấu= xảy ra khi x=y=3
tick mik nha