Những câu hỏi liên quan
DC
Xem chi tiết
DT
Xem chi tiết
DT
3 tháng 9 2019 lúc 10:47

Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=1-2x^2y^2\)

Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)

Thế vào ta được

\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)

Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không 

Bình luận (0)
DT
8 tháng 9 2019 lúc 20:47

Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)

Bình luận (0)
NL
Xem chi tiết
H24
27 tháng 7 2019 lúc 16:51

\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)

\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)

Bình luận (0)
H24
27 tháng 7 2019 lúc 16:59

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)

Bình luận (1)
SX
Xem chi tiết
SX
23 tháng 7 2015 lúc 15:21

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

Bình luận (0)
DD
25 tháng 3 2016 lúc 21:22

rtyuiuydghfrtghhfrfghhgfghjhg

Bình luận (0)
PH
Xem chi tiết
NN
30 tháng 4 2020 lúc 15:52

2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)

Vì \(x\)\(x+1\)và \(x+2\)là 3 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)

mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)

hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
PH
3 tháng 5 2020 lúc 18:39

Mình cảm ơn ạ !!!

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NL
25 tháng 7 2020 lúc 21:57

a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)

\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)

b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)

\(=1\left(1+3.9\right)=19\)

Bình luận (0)
LN
Xem chi tiết
NN
26 tháng 11 2016 lúc 21:56

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

Bình luận (0)
TH
26 tháng 11 2016 lúc 21:20

mk chua hok den nen ko co bit lam

Bình luận (0)
LN
26 tháng 11 2016 lúc 21:23

cảm ơn b nhé

Bình luận (0)
PM
Xem chi tiết
LN
Xem chi tiết
MS
2 tháng 1 2017 lúc 18:31

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

Bình luận (0)