Những câu hỏi liên quan
NE
Xem chi tiết
NT
4 tháng 2 2023 lúc 10:11

a: \(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)

\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)

Để dư bằng 0 thì -3x+7=0

=>x=7/3

b: \(\dfrac{x^5+2x^4+3x^2+x-3}{x^2+1}\)

\(=\dfrac{x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4}{x^2+1}\)

\(=x^3+2x^2-x+1+\dfrac{2x-4}{x^2+1}\)

Để đư bằng 0 thì 2x-4=0

=>x=2

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 10 2021 lúc 0:10

Bài 3:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 9 2018 lúc 5:57

Bình luận (0)
TA
Xem chi tiết
LH
22 tháng 8 2019 lúc 22:27

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Bình luận (0)
TT
Xem chi tiết
AH
18 tháng 11 2021 lúc 0:22

Lời giải:

Ta có:

$2x^4-3x^3-3x-2=2x^2(x^2-1)-3x(x^2-1)+2x^2-6x-2$

$=(2x^2-3x)(x^2-1)+2(x^2-1)-6x$

$=(2x^2-3x+2)(x^2-1)-6x$

Vậy $2x^4-3x^3-3x-2$ chia $x^2-1$ dư $-6x$

Không có đáp án nào đúng

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 7 2018 lúc 4:21

Ta có

( 2 x 4   –   3 x 3   +   x 2 )   :   - 1 2 x 2   +   4 ( x   –   1 ) 2   =   0 ⇔   2 x 4 : ( - 1 2 x 2 ) - 3 x 3 : ( - 1 2 x 2 ) + x 2 : ( - 1 2 x 2 ) + 4 ( x 2 - 2 x + 1 ) = 0 ⇔   - 4 x 2   +   6 x   –   2   +   4 x 2   –   8 x   +   4   =   0

 

ó -2x + 2 = 0

ó x  = 1

Đáp án cần chọn là: C

Bình luận (0)
CN
4 tháng 8 2021 lúc 19:11

Câu c nha bạn

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:42

\(F\left(x\right)=3x^4+2x^3+6x^2-x+2\)

\(G\left(x\right)=-3x^4-2x^3-5x^2+x-6\)

Bình luận (0)
H24
17 tháng 4 2022 lúc 12:49

F(x)=-x+2+5x2+2x4+2x3+x2+x4

F(x)= ( 5x2+x2) + ( 2x4 +x4)  +2x3-x+2

F (x) = 6x2 + 3x4 +2x3-x+2

 

G(x) = -x2+x3+x-6-3x3-4x2-3x4

G (x) = ( -x2 -4x2) + ( x3 -3x3) -3x4 +x-6

G (x) =  -5x2 - 2x3 -3x4 +x-6

Bình luận (0)
MQ
Xem chi tiết
HV
14 tháng 6 2019 lúc 15:39

2x4 ,4 là mũ hay số vậy

Bình luận (1)
T8
Xem chi tiết
NT
19 tháng 12 2021 lúc 21:30

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

Bình luận (0)