cho hình bình hành mnpq (mn>np) kẻ mh vuông góc vơí nq , kẻ pk vuông góc với nq chứng minh mh=pk
Cho hình bình hành MNPQ ( MN > NP). Kẻ MN vuông góc với NQ ( H thuộc NQ), kẻ PK vuông góc với NQ ( K thuộc NQ)
a) chứng minh MH=PK
b) Chứng minh tứ giác MKPH là hình bình hành
c) Gọi O là giao điểm của MP và NQ. Tia MH cắt PQ tại E, tia PK cắt MN tại F. Chứng minh E,O,F thẳng hàng.
a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có
MQ=PN
\(\widehat{MQH}=\widehat{PNK}\)
Do đó: ΔMHQ=ΔPKN
Suy ra: MH=PK
cho hình chữ nhật MNPQ: MN= 10 ; NP= 8. Vẽ MH vuông góc vs NQ. chứng minh:
a, MNQ đồng dạng HMQ rồi => MQ^2 = MH. NQ
b, Tính HQ, MH
Cho hình chữ nhật MNPQ,MP cắt NQ tại O.Gọi K là trung điểm cạnh MN,NQ cắt PK tại H.Qua M kẻ đường thẳng song song với NQ cắt PK tại I.
a)Chứng minh tứ giác MINH là hình bình hành
b) Chứng minh H là trung diểm của PI
c) Qua O kẻ đường thẳng song song với PK cắt PQ tại F. Chứng minh \(\dfrac{QF}{QP}\)=\(\dfrac{3}{4}\)
a: Xét ΔKMI và ΔKNH có
\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)
KM=KN
\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)
Do đó: ΔKMI=ΔKNH
=>KI=KH
=>K là trung điểm của HI
Xét tứ giác MINH có
K là trung điểm chung của MN và HI
nên MINH là hình bình hành
b: Ta có: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm chung của MP và NQ
Xét ΔNMP có
PK,NO là các đường trung tuyến
PK cắt NO tại H
Do đó: H là trọng tâm của ΔNMP
Xét ΔMNP có
PK là trung tuyến
H là trọng tâm
Do đó: \(PH=\dfrac{2}{3}PK\)
PH+HK=PK
=>\(HK+\dfrac{2}{3}PK=PK\)
=>\(HK=\dfrac{1}{3}PK\)
=>PH=2KH
mà KI=2KH(K là trung điểm của IH)
nên PH=HI
=>H là trung điểm của PI
c: Xét ΔMNP có
NO là đường trung tuyến
H là trọng tâm
Do đó: OH=1/3NO
=>OH=1/3QO
QO+OH=QH
=>\(\dfrac{1}{3}QO+QO=QH\)
=>\(QH=\dfrac{4}{3}QO\)
=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)
Xét ΔQHP có OF//HP
nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)
=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)
cho ΔMNP cân tại N trên mp lấy điểm a. trên tia đối của tia lấy điểm b sao cho ma= pb
A. chứng minh rằng Δnba là tam giác cân
B. kẻ mh vuông góc na (hϵ na) kẻ pk vuông góc nb (kϵ nb ). chứng minh mh= pk
cho tam giác mnp vuông tại n (mn<np) có đường cao nh. a) tính np, nh, mh, hp biết mn=15cm và mp=25cm. b) kẻ hq vuông góc với np tại q. Gọi K là trung điểm của mn, pk cắt hq tại i.Chứng minh: cot góc imp nhân cos góc ipm=4 toán 9
a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔMNP có MQ là phân giác
nên QN/MN=QP/MP
=>QN/3=QP/4=(QN+QP)/(3+4)=20/7
=>QN=60/7cm; QP=80/7cm
b: QE//MN
=>PQ/PN=EQ/MN
=>EQ/12=80/7:20=4/7
=>EQ=48/7cm
c: MH=12*16/20=9,6cm
\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho hcn(MNPQ) có MQ = 4cm, góc PMG=50 độ a/ Tính MP b/ Kẻ QH ⊥ MP (H ∈ MP). Tính QH, MH c/ Kẻ PK ⊥ QN (K ∈ QN). Gọi O ≡ MN ∩ NQ. C/m: ΔQHO = ΔPKO d/ Tính S(QHKP)
Mk đg cần gấp, giúp mk vs. Cảm ơnnn
xét △MIN và △QMN có
Iˆ=Mˆ(=900)I^=M^(=900)
NˆchungN^chung
=>△MIN ∼ △QMN (g.g)(đpcm)
b) vì MNPQ là hình chữ nhật
=> NM//PQ
=> N1ˆ=Q1ˆ(SLT)N1^=Q1^(SLT)
XÉT △MIN và △MPQ có
Iˆ=Pˆ(=900)I^=P^(=900)
N1ˆ=Q1ˆ(cmt)N1^=Q1^(cmt)
=> △MIN ∼ △MPQ (g.g)(đpcm)
c xét △MIQ và △ NMQ có
Iˆ=Mˆ(=900)I^=M^(=900)
QˆchungQ^chung
=> △MIQ ∼ △ NMQ (g.g)
=> MQQN=IQMQMQQN=IQMQ
=> MQ.MQ=QN.QI
=> MQ2=QN.QI(đpcm)
d>xét △MNQ có Mˆ=900M^=900 theo đl pi ta go ta có
QN2 =QM2+MN2
⇔ QN2=32+42
⇔ QN2=25
⇔ QN=5 (cm)
vì MNPQ là hình cữ nhật
=> QM=NP=3cm
vì △MIQ ∼ △ NMQ (theo c)
=> MINM=MQNQ=MI4=35MINM=MQNQ=MI4=35
=> MI= 4.35=2,4(cm)4.35=2,4(cm)
vậy MI=2,3 cm
Mình làm đâị hoing bt đúng ko nhé! chúc bạn học tốt!
cho tam giác MNP cân tại N trên tia đối của tia MP lấy điểm A trên tia đối của tia PM lấy điểm B sao cho MA = BM a) chứng minnh rằng tam giác NAB là tam giác cân b) kẻ MH vuông góc NA (H THUỘC NA)và kẻ PK vuông góc NP (K thuộc NB) chứng minh MH = PK
a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)
a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)vv
Cho tam giác MNP cân tại M, MN = 5cm, NP= 4cm. Kẻ MH vuông góc NP tại H
a) Chứng minh và H là trung điểm của NP
b) Tính MH (làm trong đến chữ số thập phân thứ nhất)
c) Kẻ đường thẳng d vuông góc với MN tại N, d cắt đường thẳng MH tại I. Chứng minh: tam giác MNI=MPI
d) Kẻ NE vuông góc với MP tại E. Chứng minh NP là tia phân giác của góc E
a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI