LA

Cho hình chữ nhật MNPQ,MP cắt NQ tại O.Gọi K là trung điểm cạnh MN,NQ cắt PK tại H.Qua M kẻ đường thẳng song song với NQ cắt PK tại I.

a)Chứng minh tứ giác MINH là hình bình hành

b) Chứng minh H là trung diểm của PI 

c) Qua O kẻ đường thẳng song song với PK cắt PQ tại F. Chứng minh       \(\dfrac{QF}{QP}\)=\(\dfrac{3}{4}\)

NT
1 tháng 1 2024 lúc 12:52

a: Xét ΔKMI và ΔKNH có

\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)

KM=KN

\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)

Do đó: ΔKMI=ΔKNH

=>KI=KH

=>K là trung điểm của HI

Xét tứ giác MINH có

K là trung điểm chung của MN và HI

nên MINH là hình bình hành

b: Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm chung của MP và NQ

Xét ΔNMP có

PK,NO là các đường trung tuyến

PK cắt NO tại H

Do đó: H là trọng tâm của ΔNMP

Xét ΔMNP có

PK là trung tuyến

H là trọng tâm

Do đó: \(PH=\dfrac{2}{3}PK\)

PH+HK=PK

=>\(HK+\dfrac{2}{3}PK=PK\)

=>\(HK=\dfrac{1}{3}PK\)

=>PH=2KH

mà KI=2KH(K là trung điểm của IH)

nên PH=HI

=>H là trung điểm của PI

c: Xét ΔMNP có

NO là đường trung tuyến

H là trọng tâm

Do đó: OH=1/3NO

=>OH=1/3QO

QO+OH=QH

=>\(\dfrac{1}{3}QO+QO=QH\)

=>\(QH=\dfrac{4}{3}QO\)

=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)

Xét ΔQHP có OF//HP

nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)

=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)

Bình luận (0)
LA
1 tháng 1 2024 lúc 11:13

giúp mik với ak

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
GN
Xem chi tiết
FP
Xem chi tiết
NP
Xem chi tiết
MA
Xem chi tiết
AC
Xem chi tiết
HA
Xem chi tiết
AP
Xem chi tiết
VH
Xem chi tiết