M=x^2×(x+y) - y^2×(x+y)+x^2-y^2+2×(x+y)+3 biết x+y+1=0
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
TÍnh giá trị của biểu thức:
a/ x(x^2-y)(x^3-2y^2)(x^4-3y^3)(x^5-4y4) tại x=2;y=(-2)
b/ D=x^2(x+y)-y^2(x+y)+x^2-y^2+2(x+y)+3 biết x+y+1
c/M=(x+y)(y+z)(x+z) biết xyz=2 và x+y+z=0
1) Biết x+y+1=0. Tính biểu thức D=x2 *(x+y) - y2*(x+y) + x2- y2 + 2*(x+y)+3
2) Cho x*y*z=2 và x+y+z=0. Tính M=(x+y)*(y+z)*(x+z)
Tính giá trị biểu thức
a) M = x2(x + y) – y2(x + y) + x2 – y2 + 2(x + y) + 3 biết x + y + 1 = 0
b) N = (x + y)(y + z)(x + z) biết xyz = 2 và x + y + z = 0.
c) P = 3x + biết |x – 2| + (y – 1)2 = 0
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
Tìm Min, Max :
a)A = x + y + 1 biết \(x^2+2xy+3\left(x+y\right)+2y^2+2=0\)
b)B = x + y + 1 biết \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
c)C = \(x^2+y^2\) biết \(x^2\left(x^2+y^2-3\right)+\left(y^2-4\right)^2=1\)
d)D = x + y biết \(x^2+2y^2+2xy+3x+3y-4=0\)
e)E = \(x^2+y^2\) biết \(\left(x^2-y^2+1\right)^2+4x^2y^2-x^2-y^2=0\)
tính A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4 biết x+y=0
B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3 biết x+y=-1
a/ \(A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4\\=2(x+y)+3xy(x+y)+5x^2y^2(x+y)+4\\=2.0+3xy.0+5x^2y^2.0+4=4\)
b/ \(B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3\\=(x+y)(x^2-y^3)+(x^2-y^3)+3\\=(x+y+1)(x^2-y^3)+3\\=(-1+1)(x^2-y^3)+3\\=0(x^2-y^3)+3\\=3\)
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
1 Tính giá trị biểu thức
a) M= (x5+y5-x2.y2). ( x+y)-1 biết x+y=0
b) N = \(\frac{x-y}{x+3y}\) biết \(\frac{x}{y}\)=\(\frac{1}{3}\)
c) M= (x+y).x2-y3. ( x+y)+(x2-y3)+3 biết x+y+1=0
******** GIÚP MÌNH VỚI Ạ, MÌNH CẦN GẤP