Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
H24
17 tháng 4 2022 lúc 10:32

Câu 1. Cho tam giác MNP cân tại M, nếu góc M=50độ thì góc ở đáy bằng 
A. 130 độ
B. 40 độ 
C. 100 độ
D. 65 độ 
Câu 2. Cho tam giác MNP vuông tại M, theo định lý Pytago ta có: 
A. NM2=MP2+NP2
B. NP2=MN2+MP2
C. MP2=MN2+NP2
D. NP2=MN2-MP2
Câu 3. Nếu tam giác ABC có AC>AB thì theo quan hệ giữa góc và cạnh đối diện trong tam giác 
A. Góc A> góc B
B. Góc A> góc C
C. Góc C> góc A
D. Góc B> góc C

Bình luận (3)
PX
Xem chi tiết
NT
1 tháng 1 2023 lúc 10:17

*bạn kí tự vecto vào bài nhé 

Gọi trọng tâm tam giác ABC là G 

Ta có \(2GB+3GC=2\left(GM+MB\right)+3\left(GM+MC\right)=5GM+2MB+3MC=5GM\)

tượng tự \(2GC+3GA=5GN\)

\(2GA+3GB=5GP\)

cộng vế với vế ta được 

\(GA+GB+BC=GN+GM+GP\Leftrightarrow GN+GM+GP=0\)

Vậy G là trọng tâm tam giác MNP 

 

Bình luận (0)
AF
Xem chi tiết
DK
Xem chi tiết
HN
Xem chi tiết
BV
29 tháng 11 2016 lúc 16:48

M N P G x y z a b c
Đặt độ dài các cạnh như hình vẽ trên.
Cô sẽ dùng kiến thức lượng giác lớp 10 để giải. Một cố công thức và bất đẳng thức cơ sở để làm bài này, các em có thể kham khảo trên các webside khác.

Áp dụng công thức \(cotA=\frac{b^2+c^2-a^2}{4S}\) ( S là diện tích của tam giác chứa góc A) 
 và dễ thấy \(S_{\Delta GMN}=S_{\Delta GNP}=S_{\Delta GMP}=\frac{1}{3}S_{\Delta MNP}\). Từ đó ta có:

\(cotGNP+cotGPM+cotGMN=\frac{a^2+y^2-b^2}{4S_{\Delta GNP}}+\frac{z^2+b^2-c^2}{4.S_{\Delta GPM}}+\frac{x^2+c^2-a^2}{4.S_{\Delta GMN}}\) 
                                                              \(=\frac{x^2+a^2-b^2+z^2+b^2-c^2+x^2+c^2-a^2}{4.\frac{1}{3}.S_{\Delta MNP}}\)
                                                             \(=\frac{x^2+y^2+z^2}{4.\frac{1}{3}.S_{\Delta MNP}}=3\sqrt{3}\)
 Suy ra:                          \(x^2+y^2+z^2=4\sqrt{3}.S_{\Delta MNP}\). (1) 
Áp dụng công thức: \(x=2R.sinP;y=2R.sinM;z=2r.sinN;S_{\Delta MNP}=2R.sinM.sinN.sinP\) ( R là bán kính đường tròn nội tiếp tam giác ). Thay vào (1) và rút gọn ta có:
\(sin^2M+sin^2N+sin^2P=2\sqrt{3}.sinM.sinN.sinP\)
\(\Leftrightarrow\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)=9.sinM.sinN.sinP\)(2) 
Áp dụng bất đẳng thức: Trong tam giác MNP bất kì ta có: \(sinM+sinN+sinP\le\frac{3\sqrt{3}}{2}\) vào vế trái của (2) ta có:
\(\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)\ge\left(sinM+sinN+sinP\right)\left(sin^2M+sin^2N+sin^2P\right)\)
                                                                  \(\ge3\sqrt[3]{sinM.sinN.sinP}.3\sqrt[3]{sin^2M.sin^2N.sin^2P}=9.sinM.sinN.sinP\).
 Dấu bằng xảy ra khi \(sinM=sinN=sinP\) hay \(\widehat{M}=\widehat{N}=\widehat{P}=60^o\). Hay tam giác MNP đều.
                                          

Bình luận (0)
NT
Xem chi tiết
NT
15 tháng 11 2021 lúc 19:13

ai đóa giúp mik ik :<

Bình luận (0)
NT
15 tháng 11 2021 lúc 21:47

a: Ta có: ΔABC=ΔDEF

nên AB=DE(1)

Ta có: ΔDEF=ΔMNP

nên DE=MN(2)

Từ (1) và (2) suy ra AB=MN

Bình luận (0)
DT
Xem chi tiết
HV
Xem chi tiết
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:02

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

Bình luận (0)
VN
15 tháng 7 2023 lúc 12:21

câu c,d bài 2

Bình luận (0)