Tam giác MNP thỏa mãn 3 ∠ M + 2 ∠ N = 180 độ . Chứng minh rằng: PN2 + MPMN . - MN2 = 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1. Cho tam giác MNP cân tại M, nếu góc M=50độ thì góc ở đáy bằng
A. 130 độ
B. 40 độ
C. 100 độ
D. 65 độ
Câu 2. Cho tam giác MNP vuông tại M, theo định lý Pytago ta có:
A. NM2=MP2+NP2
B. NP2=MN2+MP2
C. MP2=MN2+NP2
D. NP2=MN2-MP2
Câu 3. Nếu tam giác ABC có AC>AB thì theo quan hệ giữa góc và cạnh đối diện trong tam giác
A. Góc A> góc B
B. Góc A> góc C
C. Góc C> góc A
D. Góc B> góc C
Câu 1. Cho tam giác MNP cân tại M, nếu góc M=50độ thì góc ở đáy bằng
A. 130 độ
B. 40 độ
C. 100 độ
D. 65 độ
Câu 2. Cho tam giác MNP vuông tại M, theo định lý Pytago ta có:
A. NM2=MP2+NP2
B. NP2=MN2+MP2
C. MP2=MN2+NP2
D. NP2=MN2-MP2
Câu 3. Nếu tam giác ABC có AC>AB thì theo quan hệ giữa góc và cạnh đối diện trong tam giác
A. Góc A> góc B
B. Góc A> góc C
C. Góc C> góc A
D. Góc B> góc C
cho tam giác ABC và 3 điểm M, N, P thỏa ;
2MB→ + 3MC→ = 0→
2NC→ + 3NA→ = 0→
2PA→ + 3PB→ = 0→
Chứng minh rằng △ABC và △MNP có cùng trọng tâm
*bạn kí tự vecto vào bài nhé
Gọi trọng tâm tam giác ABC là G
Ta có \(2GB+3GC=2\left(GM+MB\right)+3\left(GM+MC\right)=5GM+2MB+3MC=5GM\)
tượng tự \(2GC+3GA=5GN\)
\(2GA+3GB=5GP\)
cộng vế với vế ta được
\(GA+GB+BC=GN+GM+GP\Leftrightarrow GN+GM+GP=0\)
Vậy G là trọng tâm tam giác MNP
Cho tam giác ABC nhọn, các đường cao BD, CE. Gọi M là trung điểm của BC.
a) Chứng minh tam giác MDE cân tại M.
b) Chứng minh góc DME = 180 độ − 2 góc A.
c) tam giác ABC cần thỏa mãn điều kiện gì để tam giác MDE đều.
Cho tam giác ABC và hai điểm M,N,P thỏa mãn | vec MA +2 vec MB = vec 0 và 4NB + NC =0| - vec PC +2 vec PA = vec 0 Chứng minh rằng M,N,P thẳng hàng.
Cho tam giác MNP có trọng tâm G thỏa mãn :
\(cotGNP+cotGPM+cotGMN=3\sqrt{3}\) . Chứng minh tam giác MNP đều.
Đặt độ dài các cạnh như hình vẽ trên.
Cô sẽ dùng kiến thức lượng giác lớp 10 để giải. Một cố công thức và bất đẳng thức cơ sở để làm bài này, các em có thể kham khảo trên các webside khác.
Áp dụng công thức \(cotA=\frac{b^2+c^2-a^2}{4S}\) ( S là diện tích của tam giác chứa góc A)
và dễ thấy \(S_{\Delta GMN}=S_{\Delta GNP}=S_{\Delta GMP}=\frac{1}{3}S_{\Delta MNP}\). Từ đó ta có:
\(cotGNP+cotGPM+cotGMN=\frac{a^2+y^2-b^2}{4S_{\Delta GNP}}+\frac{z^2+b^2-c^2}{4.S_{\Delta GPM}}+\frac{x^2+c^2-a^2}{4.S_{\Delta GMN}}\)
\(=\frac{x^2+a^2-b^2+z^2+b^2-c^2+x^2+c^2-a^2}{4.\frac{1}{3}.S_{\Delta MNP}}\)
\(=\frac{x^2+y^2+z^2}{4.\frac{1}{3}.S_{\Delta MNP}}=3\sqrt{3}\)
Suy ra: \(x^2+y^2+z^2=4\sqrt{3}.S_{\Delta MNP}\). (1)
Áp dụng công thức: \(x=2R.sinP;y=2R.sinM;z=2r.sinN;S_{\Delta MNP}=2R.sinM.sinN.sinP\) ( R là bán kính đường tròn nội tiếp tam giác ). Thay vào (1) và rút gọn ta có:
\(sin^2M+sin^2N+sin^2P=2\sqrt{3}.sinM.sinN.sinP\)
\(\Leftrightarrow\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)=9.sinM.sinN.sinP\)(2)
Áp dụng bất đẳng thức: Trong tam giác MNP bất kì ta có: \(sinM+sinN+sinP\le\frac{3\sqrt{3}}{2}\) vào vế trái của (2) ta có:
\(\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)\ge\left(sinM+sinN+sinP\right)\left(sin^2M+sin^2N+sin^2P\right)\)
\(\ge3\sqrt[3]{sinM.sinN.sinP}.3\sqrt[3]{sin^2M.sin^2N.sin^2P}=9.sinM.sinN.sinP\).
Dấu bằng xảy ra khi \(sinM=sinN=sinP\) hay \(\widehat{M}=\widehat{N}=\widehat{P}=60^o\). Hay tam giác MNP đều.
Cho tam giác ABC =tam giác DEF ; = tam giác DEF =tam giác MNP
. a) Chứng minh rằng: AB= MN ; AC= MP; BC= NP ; A= M; B= N; C =P
. b) Chứng minh rằng tam giácABC =tam giác MNP.
a: Ta có: ΔABC=ΔDEF
nên AB=DE(1)
Ta có: ΔDEF=ΔMNP
nên DE=MN(2)
Từ (1) và (2) suy ra AB=MN
chứng minh rằng nếu a,b,c thỏa mãn là độ dài 3 cạnh của 1 tam giác ABC thì a^2(b-c)-b^2(a-c)+c^2(a-b)=0 thì ABC cân
Câu1 : Tìm các số nguyên dương a,b,c thỏa mãn :
i, ab + b - a! = 1
ii, cb + c - b! = 1
iii, a^2 - 2b^2 + 2a -4b =2
Câu 2 ; cho tam giác ABC có AB + AC= 2BC. Gọi I là giao điểm các đường phân giác trong của tam giác. Gọi M,N theo thứ tự là trung điên của AB,AC. Chứng minh rằng 2 gọc AMI và ANI có tổng là 180 độ
Bài 1: Cho tam giác ABC có AB= 28cm, AC= 35cm, góc A= 60 độ. Tính BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng:
a) AM.AB=AN.AC
b) AM.AB+AN.AC= 2 MN2
c) AM.BM+AN.CN= AH2
d) BM/CN = AB3/AC3
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)