Những câu hỏi liên quan
PB
Xem chi tiết
CT
6 tháng 9 2019 lúc 5:17

a) 3x – y = 2 (1)

⇔ y = 3x – 2.

Vậy phương trình có nghiệm tổng quát là (x; 3x – 2) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng y = 3x – 2 (Hình vẽ).

   + Tại x = 2/3 thì y = 0 ⇒ đường thẳng y = 3x – 2 đi qua điểm (2/3 ; 0).

   + Tại x = 0 thì y = -2 ⇒ đường thẳng y = 3x – 2 đi qua điểm (0; -2).

Vậy đường thẳng y = 3x – 2 là đường thẳng đi qua điểm (2/3 ; 0) và (0; -2).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x + 5y = 3 (2)

⇔ x = 3 – 5y

Vậy phương trình có nghiệm tổng quát là (3 – 5y; y) (y ∈ R).

Đường thẳng biểu diễn tập nghiệm của (2) là đường thẳng x + 5y = 3.

   + Tại y = 0 thì x = 3 ⇒ Đường thẳng đi qua điểm (3; 0).

   + Tại x = 0 thì y=3/5 ⇒ Đường thẳng đi qua điểm (0; 3/5).

Vậy đường thẳng x + 5y = 3 là đường thẳng đi qua hai điểm (3; 0) và (0; 3/5).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) 4x – 3y = -1

⇔ 3y = 4x + 1

⇔ Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm tổng quát là  (x;4/3x+1/3)(x ∈ R).

Đường thẳng biểu diễn tập nghiệm phương trình là đường thẳng 4x – 3y = -1.

   + Tại x = 0 thì y = 1/3

Đường thẳng đi qua điểm (0;1/3) .

   + Tại y = 0 thì x = -1/4

Đường thẳng đi qua điểm (-1/4;0) .

Vậy đường thẳng 4x – 3y = -1 đi qua (0;1/3) và  (-1/4;0).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) x + 5y = 0

⇔ x = -5y.

Vậy nghiệm tổng quát của phương trình là (-5y; y) (y ∈ R).

Đường thẳng biểu diễn nghiệm của phương trình là đường thẳng x + 5y = 0.

   + Tại x = 0 thì y = 0 ⇒ Đường thẳng đi qua gốc tọa độ.

   + Tại x = 5 thì y = -1 ⇒ Đường thẳng đi qua điểm (5; -1).

Vậy đường thẳng x + 5y = 0 đi qua gốc tọa độ và điểm (5; -1).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) 4x + 0y = -2

⇔ 4x = -2 ⇔ Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (-0,5; y)(y ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng x = -0,5 đi qua điểm (-0,5; 0) và song song với trục tung.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

f) 0x + 2y = 5

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (x; 2,5) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng y = 2,5 đi qua điểm (0; 2,5) và song song với trục hoành.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 3 2022 lúc 23:03

Do \(\left|x^2-4x\right|\ge0;\forall x\) nên BPT đã cho vô nghiệm

Hay tập nghiệm là \(S=\varnothing\)

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 4 2017 lúc 5:24

a. Đúng

Vì x 2  + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2

b. Đúng

Vì  x 2  – x + 1 = x - 1 / 2 2  + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0

⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1

c. Sai

Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1

Do vậy phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 không thể có nghiệm x = - 1

d. Sai

Vì điều kiện xác định của phương trình là x ≠ 0

Do vậy x = 0 không phải là nghiệm của phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 2 2018 lúc 3:40

Đáp án cần chọn: A

Bình luận (0)
HT
Xem chi tiết
NM
1 tháng 10 2021 lúc 20:07

\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NL
14 tháng 12 2020 lúc 22:39

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:44

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:55

3.

Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)

\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)

\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)

Mặt khác:

\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)

\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)

(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)

Bình luận (0)
TT
Xem chi tiết
NL
24 tháng 12 2020 lúc 13:58

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

Bình luận (1)
BT
Xem chi tiết
NT
25 tháng 1 2022 lúc 22:58

a: \(\Leftrightarrow px-2=0\)

Để phương trình vô nghiệm thì p=0

b: \(\Leftrightarrow x\left(p^2-4\right)=p-2\)

Để phương trình có vô số nghiệm thì p-2=0

hay p=2

Bình luận (0)