Tìm k để phương trình: \(kx^2+\left(2k-1\right)x+k-2=0\) có tổng bình phương các nghiệm là 2018.
Định k để phương trình : \(kx^2+\left(2k-1\right)x+k-2=0\) có tổng bình phương các nghiệm là 2018.
Với \(k\ne0\)
\(\Delta=\left(2k-1\right)^2-4k\left(k-2\right)=4k+1\ge0\Rightarrow k\ge-\frac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2k+1}{k}\\x_1x_2=\frac{k-2}{k}\end{matrix}\right.\)
\(x_1^2+x_2^2=2018\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)
\(\Leftrightarrow\frac{4k^2-4k+1}{k^2}-\frac{2k-4}{k}=2018\)
\(\Leftrightarrow4k^2-4k+1-2k^2+4k=2018k^2\)
\(\Leftrightarrow2016k^2=1\Rightarrow k=\pm\sqrt{\frac{1}{2016}}\)
Bài 1: Cho phương trình \(^{x^2-2\left(k-1\right)x+2k-5=0}\)
a) Giải phương trình với k = 1
b) Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn hệ thức \(\left|x_1\right|-\left|x_2\right|=\sqrt{14}\)
Bài 2: Cho phương trình \(x^2-5x+m=0\)(m là tham số)
a) Giải phương trình với m = 4
b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\left|x_1-x_2\right|=3\)
Tìm m để phương trình sau có nghiệm kép.
a \(x^2-\left(k+1\right)x+2+k=0\)
b \(x^2+2\left(k-1\right)x+k+9=0\)
\(a,< =>\Delta=0\)
\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)
\(< =>k^2+2k+1-8-4k=0\)
\(< =>k^2-2k-7=0\)
\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)
b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)
\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)
a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)
\(=k^2+2k+1-4k-8\)
\(=k^2-2k-7\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow k^2-2k-7=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)
Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)
Tìm giá trị của k sao cho phương trình
a) \(\left(2x+1\right)^2\)(9x+2k) - 5(x+2)=40 có nghiệm là x=2
b) 2(2x-1)+18=9(x+2)(2x+k) có nghiệm là x=1
a) Để phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2 thì Thay x=2 vào phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\), ta được:
\(\left(2\cdot2+1\right)^2\cdot\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow25\cdot\left(2k+18\right)-20=40\)
\(\Leftrightarrow25\left(2k+18\right)=60\)
\(\Leftrightarrow2k+18=\dfrac{12}{5}\)
\(\Leftrightarrow2k=-\dfrac{78}{5}\)
hay \(k=\dfrac{-39}{5}\)
Vậy: \(k=\dfrac{-39}{5}\)
(9x+2k) - 5(x+2)=40 có nghiệm là x=2
=>(2*2+1)2(9*2+2k)-5(2+2)=40
=>25(18+5k)-20=40
=>25(18+5k)=60
=>18+5k=2.4
=>5k=-15.6 =>k=-0.624
b) 2(2x-1)+18=9(x+2)(2x+k) có nghiệm là x=1
=>2(2*1-1)+18=9(1+2)(2*1+k)
=>2+18=27(2+k)
=>2+k=20/27
=>k=-34/27
Tìm K để phương trình:
\(2x^2-\left(2K-1\right)x-1=0\)
Có 2 nghiệm là hai số đối nhau
CÁC BẠN GIÚP MÌNH NHA!! MÌNH CẦN BÀI NÀY GẤP LẮM!!! THANK YOU
2 nghiệm đối nhau khi tổng của chúng = 0
<=> (2K-1)/2 = 0
<=> 2K-1 = 0
<=> K = \(\frac{1}{2}\)
Tìm k để phương trình \(\left(k^2-k\right)x^2+2kx+1=0\) có nghiệm .
\(\text{Δ}=\left(2k\right)^2-4\cdot\left(k^2-k\right)\)
\(=4k^2-4k^2+4k\)
=4k
Để phương trình có nghiệm thì \(4k\ge0\)
hay \(k\ge0\)
Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
a) Giải phương trình khi k = - 3
b) Tìm k để phương trình có nghiệm x1; x2 thỏa mãn \(x_1^2+x_2^2=x_1x_2+28\)
a: Thay k=-3 vào pt, ta được:
\(x^2-2\cdot\left(-3+2\right)x+\left(-3\right)^2+2\cdot\left(-3\right)-7=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
hay \(x\in\left\{\sqrt{5}-1;-\sqrt{5}-1\right\}\)
b: \(\text{Δ}=\left(2k+4\right)^2-4\left(k^2+2k-7\right)\)
\(=4k^2+16k+16-4k^2-8k+28\)
=8k+44
Để phương trình có hai nghiệm thì 8k+44>=0
=>8k>=-44
hay k>=-11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=28\)
\(\Leftrightarrow\left(2k+4\right)^2-3\cdot\left(k^2+2k-7\right)=28\)
\(\Leftrightarrow4k^2+16k+16-3k^2-6k+21=28\)
\(\Leftrightarrow k^2+10k+37-28=0\)
\(\Leftrightarrow\left(k+1\right)\left(k+9\right)=0\)
=>k=-1
\(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
a. Chứng minh phương trình luôn có 2 nghiệm phân biệt
b.Tìm k để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(|x_1|+|x_2|=4\)
a/ Xét phương trình : \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
Ta có :
\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)
\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k
b/ Theo định lí Vi - ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)
\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)
\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)
\(\Leftrightarrow k=\pm3\)
Vậy....
Cho HPT: \(\left\{{}\begin{matrix}2x+ky=1\\kx+2y=1\end{matrix}\right.\) (k là tham số). Tìm k để hệ phương trình có nghiệm
\(\left\{{}\begin{matrix}2x+ky=1\\kx+2y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{k}{2}y+\dfrac{1}{2}\\k\left(-\dfrac{k}{2}y+\dfrac{1}{2}\right)+2y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{k}{2}y+\dfrac{1}{2}\\\left(-\dfrac{k^2}{2}+2\right)y+\left(\dfrac{k}{2}-1\right)=0\end{matrix}\right.\)
Hệ PT có nghiệm \(\Leftrightarrow\left(-\dfrac{k^2}{2}+2\right)y+\left(\dfrac{k}{2}-1\right)=0\) có nghiệm
\(\Leftrightarrow-\dfrac{k^2}{2}+2\ne0\Leftrightarrow\dfrac{k^2}{2}=2\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)