Số hữu tỉ x thỏa mãn x2+2 là số nguyên. CMR: x cũng là một số nguyên
Số hữu tỉ x thỏa mãn x2-2 là số nguyên. CMR: x cũng là một số nguyên
Ta có: \(x^2-2\in Z,-2\in Z\)
\(\Rightarrow x^2\in Z\Rightarrow x\in Z\)
Vì \(x^2-2\) là số nguyên
mà 2 là số nguyên
nên \(x^2\) là số nguyên
hay x là số nguyên
Cho x,y nguyên dương khác 0 thỏa mãn x^5+y^5=2x^3y^3. Cmr 1-1/xy là Bình phương của một số hữu tỉ.
Sao có 2 bạn tl mik mà nó ko hiện ra vậy
Cho số hữu tỷ x thỏa mãn x^2 + 2x là một số nguyên. Chứng minh x là một số nguyên.
Cho số hữu tỷ x thỏa mãn x^2 + 2x là một số nguyên. Chứng minh x là một số nguyên.
Với \(x=0\)hiển nhiên đúng. Với \(x\ne0\):
Đặt \(x=\frac{a}{b};\left(\left|a\right|,\left|b\right|\right)=1\).
\(x^2+2x=\frac{a^2}{b^2}+\frac{2a}{b}=\frac{a^2+2ab}{b^2}=\frac{a\left(a+2b\right)}{b^2}\)
mà \(\left(a,b\right)=1\Rightarrow a+2b⋮b^2\Rightarrow a=kb^2-2b,k\inℤ\)
khi đó \(a⋮b\).
Suy ra \(x\)là một số nguyên.
Tìm tất cả các số hữu tỉ x > 0 thỏa mãn 3x và 2/x đều là các số nguyên
Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)
Mà x>0 nên \(x\in\left\{1,2\right\}\)
Để 2/x là số nguyên thì \(x\in\left\{1;2\right\}\)
Bài 1:
a) Tìm số nguyên tố thỏa mãn : (p+4), (p+8) cũng là các số nguyên .
b) Tìm số hữu tỉ a thỏa mãn : 2a + 5a là số tự nhiên và là số chính phương.
Giúp mình nha mọi người.
Cảm ơn bạn Phan Thị Nhã Uyên ~~~
Cho x,y là các số nguyên dương thỏa mãn: x2+y2+30 ⋮ x+y. CMR: x,y là các số lẻ và nguyên tố cùng nhau
cho x là số thực thỏa mãn x^2−x là số nguyên khác 1 và x^3−2x cũng là số nguyên
CMR: x là số nguyên
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)