Giải và biện luận phương trình:
x+a/x-5 + x+5/x-a =2
Giải và biện luận các phương trình:
a) a-x/a-b - x-b/a+b = 2ab/a^2-b^2
b) m×(x-1)/2+ 2×(x+n)/5 = x+m-6/4
có làm thì mới ra ko hỏi han nhìu
chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bn hoang kim đừng cmt linh tinh nhé
\(x^5+x^4+x^3+x^2+x=0\)
⇔\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)
⇔\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)
⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)
giải và biện luận phương trình sau:
a, m(x-1)=5-(m-1)x
b, (m*m-2m)x+5=5m-mx
với m là tham số (m*m là m mũ 2)
giải phương trình:x^2+5x+1=(x+5)nhân căn của x^2+1
Giải và biện luận phương trình (m là tham số)
a,\(\frac{x-m}{x+5}+\frac{x+5}{x+m}=2\)
b,\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)
a) ĐKXĐ : \(x\ne5;x\ne-m\)
Khử mẫu ta được :
\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)
\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)
\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)
Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)
Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)
Để nghiệm trên là nghiệm của PT ban đầu thì ta có :
\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)
Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu
b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)
PT đã cho đưa về dạng x(m+2) = 2m(4-m)
Nếu m = -2 thì 0x = -24 ( vô nghiệm )
Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)( \(x\ne2;x\ne m;x\ne2m\) )
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)
Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
Giải và biện luận theo phương trình
(m^2 - 3)x + 5 = x + m + 3
giải giùm nha
\(\left(m^2-3\right)x+5=x+m+3\)
\(\left(m^2-3\right)x-x=m-2\)
\(\left(m^2-4\right)x=m-2\)
\(\frac{\left(m+2\right)\left(m-2\right)x}{m-2}=1\)
\(\left(m+2\right)x=1\)
Để biểu thức trên thỏa mãn thì m = -1 ; x = 1
Giải và biện luận phương trình:
\(x^3+\left(3-a\right)x^2+\left(a-9\right)x+a^2-6a+5=0\)