Những câu hỏi liên quan
TM
Xem chi tiết
NT
25 tháng 12 2021 lúc 21:42

Câu 4: 

\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 8 2023 lúc 14:43

a: =>2x^2+9x-6x-27=0

=>x(2x+9)-3(2x+9)=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

b: =>-10x^2+6x-5x+3=0

=>-2x(5x-3)-(5x-3)=0

=>(5x-3)(-2x-1)=0

=>x=-1/2 hoặc x=5/3

c: =>-x^3+2x^2-x^2+4=0

=>-x^2(x-2)-(x-2)(x+2)=0

=>(x-2)(-x^2-x-2)=0

=>x-2=0

=>x=2

d: =>(x^3+8)-4x(x+2)=0

=>(x+2)(x^2-2x+4)-4x(x+2)=0

=>(x+2)(x^2-6x+4)=0

=>x=-2 hoặc \(x=3\pm\sqrt{5}\)

Bình luận (0)
NT
Xem chi tiết
H24
4 tháng 8 2021 lúc 16:04

a/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\)

\(=x^2+bx+ax+ab\)

\(=x^2+\left(ax+bx\right)+ab\)

\(=x^2+x\left(a+b\right)+ab=VP\) (đpcm)

b/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)

\(=x^3+cx^2+ax^2+acx+bx^2+bcx+abx+abc\)

\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+acx\right)+abc\)

\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)+abc=VP\) (đpcm)

Bình luận (0)
LQ
Xem chi tiết
NL
8 tháng 3 2020 lúc 23:30

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 3 2020 lúc 23:35

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 3 2020 lúc 23:39

Bài 1:

e/ \(\Leftrightarrow x^4+2x^2-8x+5=0\)

\(\Leftrightarrow x^4-2x^3+x^2+2x^3-4x^2+2x+5x^2-10x+5=0\)

\(\Leftrightarrow x^2\left(x-1\right)^2+2x\left(x-1\right)^2+5\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+5\right)\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+5=0\left(vn\right)\\x=1\end{matrix}\right.\)

Bài 2:

a/ Đặt \(x^2-5x=t\)

\(t^2+10t+24=0\Rightarrow\left[{}\begin{matrix}t=-4\\t=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x=-4\\x^2-5x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+4=0\\x^2-5x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=4\\x=2\\x=3\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
14 tháng 7 2021 lúc 18:37

a.

\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x-\sqrt{1+x^2}\right)\left(x+\sqrt{1+x^2}\right)}+2=0\)

\(\Leftrightarrow\dfrac{2x}{x^2-1-x^2}+2=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow x=1\)

b.

ĐKXĐ: \(x\ge a\)

Đặt \(\sqrt{x-a}=t\ge0\Rightarrow x=t^2+a\)

Pt trở thành:

\(2\left(t^2+a\right)-5at+2a^2-2a=0\)

\(\Leftrightarrow2t^2-5at+2a^2=0\)

\(\Leftrightarrow\left(2t-a\right)\left(t-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{a}{2}\\t=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-a}=\dfrac{a}{2}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
TT
18 tháng 1 2022 lúc 12:27

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
LA
14 tháng 3 2021 lúc 18:56

undefined

Bình luận (3)