Tìm giá trị của X để A=x^2+4x+2=14
Cho biểu thức A=\(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
a) Rút gọn A
b) Tìm các giá trị của x để \(A>A^2\)
c) Tìm các giá trị của x để |A|>14
\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)
\(2\sqrt{x}-1>0\);\(4x>0\)
\(\Rightarrow x>0\)thì \(A>A^2\)
câu c là \(\left|A\right|>\frac{1}{4}\)
Cho biểu thức: A=( x+2/ 2-x - 2-x/x+2 - 4x²/x²-4) : ( 2/ 2-x + x+3/2x-x²)
a) Tìm điều kiện xác định của biểu thức A.
b) Chứng minh rằng A= 4x²/ 3x+3
c) Tính giá trị của A khi x= 1/2
d) Với giá trị nào của x thì A=-1.
e) Tìm giá trị của x để A
Bạn nên viết biểu thức A bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu biểu thức của bạn hơn.
Tìm các giá trị nguyên của x để đa thức A=12x^3-7x^2-14x+14 chia hết cho đa thức B=4x-5
Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z²
+) 2xz ≤ x² + z²
cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3
Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1
:D
Bài 2: (3 điểm) Cho phân thức \(\dfrac{4x-4}{2x^2-2}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)
\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{x+1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)
\(\Leftrightarrow x+1=-1\)
hay x=-2(thỏa ĐK)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
\(A=\frac{4x-4}{2x^2-2}\)
b, Tìm giá trị của x để A có giá trị -2
c, Tìm giá trị của x để A có giá trị nguyên
Bài 1: Cho phân thức: A= 2x^2-4x+8/x^3+8
a) Rút gọn A
b) Tính giá trị của A, biết |x| = 2
c) Tìm x để A = 2
d) Tìm x để A < 0
e) Tìm x thuộc Z để A có giá trị nguyên
Bài 2: Cho B= x^2-4x+4/x^2-4
a) Rút gọn B
b) Tính giá trị của B, biết |x-1| = 2
c) Tìm x để B = -1
d) Tìm x để B < 1
e) Tìm x thuộc Z để B nhận giá trị nguyên
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
cho a=12x-2/4x+1
a)tính giá trị của A khi 2x-4=0
b)tìm giá trị của x để A=1
c)tìm x nguyên để Acó giá trị nguyên
a, A = \(\dfrac{12x-2}{4x+1}\)
2\(x\) - 4 = 0 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 = 2
Giá trị của A tại 2\(x\) - 4 = 0 là giá trị của A tại \(x\) = 2
A = \(\dfrac{12\times2-2}{4\times2+1}\) = \(\dfrac{22}{9}\)
b, A = 1 \(\Leftrightarrow\) \(\dfrac{12x-2}{4x+1}\) = 1
12\(x\) - 2 = 4\(x\) + 1
12\(x\) - 4\(x\) = 1 + 2
8\(x\) = 3
\(x\) = \(\dfrac{3}{8}\)
c, A \(\in\) Z ⇔ 12\(x\) - 2 ⋮ 4\(x\) + 1
12\(x\) + 3 - 5 ⋮ 4\(x\) + 1
3.(4\(x\) + 1) - 5 ⋮ 4\(x\) + 1
5 ⋮ 4\(x\) + 1
Ư(5) ={-5; -1; 1; 5}
Lập bảng ta có:
\(4x+1\) | -5 | -1 | 1 | 5 |
\(x\) | -3/2 | -1/2 | 0 | 1 |
Vậy \(x\) \(\in\) {0; 1}
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)
\(A=\frac{x^4-16}{x^4-4x^3+8x^2-16x-16}\)
a) Tìm giá trị của x để giá trị của biểu thức A xác định
b) Rút gọn A
c) Tìm x để A có giá tri bằng 2
d) Tìm các giá trị nguyên của x để A nhận giá trị nguyên