Những câu hỏi liên quan
NK
Xem chi tiết
TD
20 tháng 2 2020 lúc 20:55

https://lazi.vn/edu/exercise/giai-phuong-trinh-x-1-x-22-x-1-x-4-32x-4-x-42-0-1

chỉ tiềm thấy  cái này thôi ~ vì mk k thể giải đc nên nhờ mạng nên thông cảm cho nha

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NT
11 tháng 11 2021 lúc 22:04

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

Bình luận (0)
CN
Xem chi tiết
DT
18 tháng 6 2016 lúc 22:02

cái j zị

Bình luận (0)
NA
18 tháng 6 2016 lúc 22:03

đề bị sao r đó

Bình luận (0)
LF
18 tháng 6 2016 lúc 22:08

theo kinh nghiệm lâu năm của tui thì đề là;

\(\sqrt{x-2}-\sqrt{x+1}+\sqrt{2x-5}=2x^2-5x\) nhưng sao là hệ nhỉ

Bình luận (0)
HQ
Xem chi tiết
NT
30 tháng 3 2022 lúc 21:09

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21

Bình luận (0)
NT
Xem chi tiết
AH
17 tháng 2 2021 lúc 17:31

Lời giải:

ĐK:.............

Đặt $\sqrt{2x^2+x+6}=a; \sqrt{x^2+x+2}=b$ với $a,b\geq 0$ thì PT trở thành:

$a+b=\frac{a^2-b^2}{x}$

$\Leftrightarrow (a+b)(\frac{a-b}{x}-1)=0$

Nếu $a+b=0$ thì do $a,b\geq 0$ nên $a=b=0$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}=0$ (vô lý)

Nếu $\frac{a-b}{x}-1=0$

$\Leftrightarrow a-b=x$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}+x$

$\Rightarrow 2x^2+x+6=2x^2+x+2+2x\sqrt{x^2+x+2}$ (bình phương 2 vế)

$\Leftrightarrow 2=x\sqrt{x^2+x+2}(1)$

$\Rightarrow 4=x^2(x^2+x+2)$

$\Leftrightarrow x^4+x^3+2x^2-4=0$

$\Leftrightarrow (x-1)(x^3+2x^2+4x+4)=0$

Từ $(1)$ ta có $x>0$. Do đó $x^3+2x^2+4x+4>0$ nên $x-1=0$

$\Rightarrow x=1$Vậy..........

 

Bình luận (0)
DL
Xem chi tiết
H24
31 tháng 3 2022 lúc 13:22

x = 2

Bình luận (1)
H24
31 tháng 3 2022 lúc 13:25

= 2

Bình luận (0)
VA
31 tháng 3 2022 lúc 13:27

x = 2

Bình luận (0)
ND
Xem chi tiết
NT
17 tháng 9 2021 lúc 23:53

Ta có: \(4\left|3x-12\right|+2x=1-x\)

\(\Leftrightarrow\left|12x-48\right|=1-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}12x-48=1-3x\left(x\ge4\right)\\12x-48=3x-1\left(x< 4\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}15x=49\\9x=47\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{49}{15}\left(loại\right)\\x=\dfrac{47}{9}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
AH
4 tháng 4 2021 lúc 3:25

Lời giải:

Đặt $\sqrt[3]{x}=a; \sqrt[3]{2x-3}=b$. Ta có:

\(\left\{\begin{matrix} a+b=\sqrt[3]{4(a^3+b^3)}\\ 2a^3-b^3=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^3+b^3+3ab(a+b)=4(a^3+b^3)\\ 2a^3-b^3=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3+b^3=ab(a+b)\\ 2a^3-b^3=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (a-b)^2(a+b)=0(1)\\ 2a^3-b^3=3(2)\end{matrix}\right.\)

Từ $(1)$ suy ra $a=b$ hoặc $a=-b$.

Nếu $a=b$. Thay vào $(2)$ suy ra $a^3=b^3=3$

$\Leftrightarrow x=2x-3=3$ (thỏa mãn)

Nếu $a=-b$. Thay vào $(2)$ suy ra $a^3=1; b^3=-1$

$\Leftrightarrow x=1; 2x-3=-1$ (thỏa mãn)

Vậy $x=3$ hoặc $x=1$

 

 

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 2 2022 lúc 12:41

a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)

b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)

d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)

Bình luận (0)
BY
25 tháng 2 2022 lúc 12:54

a) Ta có: 4x-20=0

⇔4x=20

hay x=5

Vậy: S={5}

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=−12

hay x=-4

Bình luận (0)
HP
Xem chi tiết
TC
23 tháng 11 2021 lúc 8:15

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Bình luận (0)
TC
23 tháng 11 2021 lúc 8:40

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)

Bình luận (0)