\(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{12+x-5x^2}\)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
Giải phương trình \(\left(\frac{7}{x^2+x-12}-\frac{1}{x^2-3x+2}-\frac{1}{x^2-5x+6}-\frac{3}{x^2+5x+4}\right)=\frac{3x}{x^2-1}\)
16,giải phương trình sau.
1, \(\frac{\frac{x-3}{5}+1}{4}=\frac{\frac{2x}{3}-\frac{1}{2}}{6}\)
2, \(\frac{5x+\frac{x+2}{2}}{9}-x=\frac{\frac{x+3}{5}+15}{12}-2\)
3, 5x+\(\frac{\frac{x+2}{2}}{9}-x=\frac{\frac{x+3}{5}+15}{12}-2\)
\(\Leftrightarrow\frac{\frac{x-3+5}{5}}{4}=\frac{\frac{4x-3}{6}}{6}\Leftrightarrow\frac{x+2}{20}=\frac{4x-3}{36}\Leftrightarrow36x+72=80x-60\Leftrightarrow44x=132\Rightarrow x=2\)
\(\Leftrightarrow\frac{\frac{10x+x+2}{2}}{9}-\frac{\frac{x+3+75}{5}}{12}=x-2\)\(\Leftrightarrow\frac{11x+2}{18}-\frac{x+78}{60}=x-2\)\(\Leftrightarrow\left(\frac{11}{18}-\frac{1}{60}-1\right)x+\left(\frac{2}{18}-\frac{78}{60}+2\right)=0\).Giải típ nha, ko có Casio nên mk ko bấm
\(\Leftrightarrow5x+\frac{x+2}{18}-x-\frac{x+3+75}{60}+2=0\Leftrightarrow\left(5+\frac{1}{18}-1-\frac{1}{60}\right)x+\left(\frac{2}{18}-\frac{78}{60}+2\right)=0\).Giải típ nha
Giải phương trình :
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x > 0
@Nguyễn Việt Lâm em sắp ktra, anh giúp em bài này với ạ ....
Akai Haruma giúp em giải phương trình trên được ko ạ ^_^
@Nguyễn Việt Lâm anh giải bải này đc ko ạ .
giải phương trình:
\(\frac{5x+1}{x^{2^{ }}+5}\)+\(\frac{5x+2}{x^{2^{ }}+4}\)+\(\frac{5x+3}{x^{2^{ }}+3}\)+\(\frac{5x+4}{x^{2^{ }}+2}\)=-4
\(\frac{5x+1}{x^2+5}+\frac{5x+2}{x^2+4}+\frac{5x+3}{x^2+3}+\frac{5x+4}{x^2+2}=-4\)
\(\Leftrightarrow\frac{5x+1}{x^2+5}+1+\frac{5x+2}{x^2+4}+1+\frac{5x+3}{x^2+3}+1+\frac{5x+4}{x^2+2}+1=0\)
\(\Leftrightarrow\frac{x^2+5x+6}{x^2+5}+\frac{x^2+5x+6}{x^2+4}+\frac{x^2+5x+6}{x^2+3}+\frac{x^2+5x+6}{x^2+2}=0\)
\(\Leftrightarrow\left(x^2+5x+6\right)\left(\frac{1}{x^2+5}+\frac{1}{x^2+4}+\frac{1}{x^2+3}+\frac{1}{x^2+2}\right)=0\)
\(\Leftrightarrow x^2+5x+6=0\)\(\left(\text{Vì }\frac{1}{x^2+5}+\frac{1}{x^2+4}+\frac{1}{x^2+3}+\frac{1}{x^2+2}\ne0\forall x\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}.\)
Ai giúp vs !!!
\(a.\frac{3x-7}{5}=\frac{2x-1}{3}\\ b.\frac{4x-7}{12}-x=\frac{3x}{8}\\ c.\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\\ d.\frac{5x-8}{3}=\frac{1-3x}{2}\\ e.\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\\ f.\frac{x-1}{\frac{2}{5}}-3-\frac{3x-2}{\frac{5}{4}}-2=1\)
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
\(\Rightarrow\frac{4x-20-6x+54}{24}=\frac{5x-3+16}{8}\)
\(\Rightarrow\frac{-2x+34}{24}=\frac{5x+13}{8}\)
\(\Rightarrow-16x-272=120x+312\)
\(\Leftrightarrow-136x=584\Leftrightarrow x=\frac{-73}{17}\)
8. Giải phương trình sau:
b) \(\frac{-x^2+12x+4}{x^2+3x-4}=\frac{12}{x+4}+\frac{12}{3x-3}\)
9. Giải phương trình chứa ẩn ở mẫu sau:
\(\frac{1}{2x^2+5x-7}-\frac{2}{x^2-1}=\frac{3}{2x^2-5x-7}\)
8,
b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)
(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0
(=) -x2 +12x +4 -12x +12 -4x -16 = 0
(=) -x2 -4x = 0
(=) -x(x+4) = 0
(=) -x = 0 hoặc x +4 = 0
(=) x=0 hoặc x=-4
Vậy S={0;4}
Chúc bạn học tốt.
Giải các phương trình sau:
a)\(\frac{4}{-25x^2+30x-3}=\frac{3}{5x-1}-\frac{2}{5x-1}\)
b)\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+4}-\frac{2}{x^2-4x+3}\)
Giải phương trình
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x>0
@@@ Giúp em với @@@
--- Em đag cần ạ ---
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^2+1\geq 4x\)
\(\Rightarrow \left\{\begin{matrix} 5x^2-x+3\geq x^2+3x+2\\ 5x^2+x+\geq x^2+5x+6\\ 5x^2+3x+13\geq x^2+7x+12\\ 5x^2+5x+21\geq x^2+9x+20\end{matrix}\right.\)
\(\text{VT}\leq \frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+\frac{1}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+\frac{(x+4)-(x+3)}{(x+3)(x+4)}+\frac{(x+5)-(x+4)}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{x+1}-\frac{1}{x+5}\)
\(\Leftrightarrow \text{VT}\leq \frac{4}{x^2+6x+5}\)
Dấu "=" xảy ra khi $4x^2=1, x>0$ hay $x=\frac{1}{2}$
Vậy $x=\frac{1}{2}$ là nghiệm của PT.
Nguyễn Việt Lâm anh giúp em pt trên với ạ !!!
Akai Haruma giúp em bài này với ạ ''''