Những câu hỏi liên quan
VN
Xem chi tiết
HM
21 tháng 12 2021 lúc 7:29

Bình luận (0)
LL
Xem chi tiết
NT
25 tháng 11 2023 lúc 21:13

a: Sửa đề: A,B,M,O

Xét tứ giác BMOA có

\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)

=>BMOA là tứ giác nội tiếp

=>B,M,O,A cùng thuộc một đường tròn

b: Xét (O) có

BA,BM là tiếp tuyến

Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)

=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)

Xét (O) có

CA,CN là tiếp tuyến

Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)

=>\(\widehat{AON}=2\cdot\widehat{AOC}\)

\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)

=>\(2\cdot\widehat{BOC}=180^0\)

=>\(\widehat{BOC}=90^0\)

Xét ΔOBC vuông tại O có OA là đường cao

nên \(OA^2=AB\cdot AC\)

mà AB=BM và AC=CN

nên \(OA^2=BM\cdot CN\)

c: BA=BM

=>B nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM tại trung điểm của AM

=>BO\(\perp\)AM tại H và H là trung điểm của AM

CA=CN

=>C nằm trên đường trung trực của AN(3)

OA=ON

=>O nằm trên đường trung trực của AN(4)

Từ (3) và (4) suy ra CO là đường trung trực của AN

=>CO\(\perp\)AN tại trung điểm của AN

=>CO\(\perp\)AN tại K và K là trung điểm của AN

Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)

nên AHOK là hình chữ nhật

 

Bình luận (0)
NT
Xem chi tiết
NT
1 tháng 2 2023 lúc 23:18

a: Xét tứ giác PAOM có

góc PAO+góc PMO=180 độ

=>PAOM là tứ giác nội tiếp

b: Xét (O) có

PA,PM là tiếp tuyến

nên PA=PM và OP là phân giác của góc MOA(1)

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

Xét (O) có

QM,QB là tiếp tuyến

nên QM=QB và OQ là phân giác của góc MOB(2)

mà OM=OB

nên OQ là trung trực của MB

=>OQ vuông góc MB tại K

Từ (1), (2) suy ra góc POQ=1/2*180=90 độ

Xét tứ giác MIOK có

góc MIO=góc MKO=góc IOK=90 độ

=>MIOK là hình chữ nhật

Xét ΔOPQ vuông tại O có OM là đường cao

nên MP*MQ=OM^2=R^2

=>AP*QB=OM^2=R^2 ko đổi

Bình luận (0)
H24
Xem chi tiết
H24
14 tháng 8 2021 lúc 10:41

giup minh bai 1 gap voi ah!!

Bình luận (0)
BQ
Xem chi tiết
NT
30 tháng 11 2023 lúc 18:44

c: Gọi giao điểm của BC với Ax là K

BC\(\perp\)AC tại C

=>AC\(\perp\)BK tại K

=>ΔACK vuông tại C

\(\widehat{DKC}+\widehat{DAC}=90^0\)(ΔACK vuông tại C)

\(\widehat{DCK}+\widehat{DCA}=\widehat{KCA}=90^0\)

mà \(\widehat{DCA}=\widehat{DAC}\)(ΔDAC cân tại D)

nên \(\widehat{DKC}=\widehat{DCK}\)

=>DC=DK

mà DC=DA

nên DK=DA

=>D là trung điểm của AK

CH\(\perp\)AB

AK\(\perp\)AB

Do đó: CH//AK

Xét ΔOKD có CI//KD

nên \(\dfrac{CI}{KD}=\dfrac{OI}{OD}\left(1\right)\)

Xét ΔOAD có IH//AD

nên \(\dfrac{IH}{AD}=\dfrac{OI}{OD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{CI}{KD}=\dfrac{IH}{AD}\)

mà KD=AD

nên CI=IH

=>I là trung điểm của CH

Bình luận (0)
AH
Xem chi tiết
KL
Xem chi tiết
PT
26 tháng 5 2021 lúc 15:04
Bình luận (0)
 Khách vãng lai đã xóa
PV
20 tháng 8 2021 lúc 16:50

a) OC và OD là các tia phân giác của hai góc kề bù \widehat{AOM}\widehat{BOM} nên OC \perp OD.

Vậy \widehat{COD}=90^{\circ}.

b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: CM=AC, DM=BD

Do đó CD=CM+DM=AC+BD.

c) Ta có: AC.BD=CM.MD

Xét tam giác COD vuông tại O và OM \perp CD nên ta có

CM. MD=OM^{2}=R^{2} (R là bán kính của đường tròn O).

Vậy AC.BD=R^2 (không đổi).

Bình luận (0)
 Khách vãng lai đã xóa
H24
21 tháng 8 2021 lúc 20:06

a) OC và OD là các tia phân giác của hai góc kề bù \widehat{AOM}\widehat{BOM} nên OC \perp OD.

Vậy \widehat{COD}=90^{\circ}.

b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: CM=AC, DM=BD

Do đó CD=CM+DM=AC+BD.

c) Ta có: AC.BD=CM.MD

Xét tam giác COD vuông tại O và OM \perp CD nên ta có

CM. MD=OM^{2}=R^{2} (R là bán kính của đường tròn O).

Vậy AC.BD=R^2 (không đổi).

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NM
22 tháng 11 2021 lúc 21:07

d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)

Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)

Do đó FOD cân tại F

\(\Rightarrow OF=FD\)

Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)

\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)

Bình luận (0)