Những câu hỏi liên quan
MT
Xem chi tiết
KR
29 tháng 7 2021 lúc 21:39

ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html

Bình luận (0)
NL
29 tháng 7 2021 lúc 22:06

b.

Với \(xy=0\) không là nghiệm

Với \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)

\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)

\(\Leftrightarrow5-x^2=5x-2x^2\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
29 tháng 7 2021 lúc 22:06

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)

\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)

Thế vào 1 trong 2 pt ban đầu...

Bình luận (0)
LL
Xem chi tiết
AH
1 tháng 10 2020 lúc 22:36

Lời giải:
Xét PT $(2)$:

$\Leftrightarrow (y^2+2xy+x^2)-2(x+y)+1-x^2=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1-x^2=0$

$\Leftrightarrow (x+y-1)^2-x^2=0$

$\Leftrightarrow (y-1)(2x+y-1)=0$

$\Rightarrow y=1$ hoặc $2x+y-1=0$

Nếu $y=1$: Thay vào PT $(1)$ ta thấy mọi số thực $x$ đều thỏa mãn

Nếu $2x+y-1=0\Rightarrow y=1-2x$. Thay vào PT $(1)$ có:

$10x^2-20x=0$

$\Leftrightarrow 10x(x-2)=0\Rightarrow x=0$ hoặc $x=2$

Nếu $x=0$ thì $y=1$

Nếu $x=2\Rightarrow y=-3$

Vậy HPT có nghiệm $y=1; x$ tủy ý hoặc $y=-3; x=2$

Bình luận (0)
 Khách vãng lai đã xóa
CD
17 tháng 8 2020 lúc 10:45

Lời giải:
Xét PT $(2)$:

$\Leftrightarrow (y^2+2xy+x^2)-2(x+y)+1-x^2=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1-x^2=0$

$\Leftrightarrow (x+y-1)^2-x^2=0$

$\Leftrightarrow (y-1)(2x+y-1)=0$

$\Rightarrow y=1$ hoặc $2x+y-1=0$

Nếu $y=1$: Thay vào PT $(1)$ ta thấy mọi số thực $x$ đều thỏa mãn

Nếu $2x+y-1=0\Rightarrow y=1-2x$. Thay vào PT $(1)$ có:

$10x^2-20x=0$

$\Leftrightarrow 10x(x-2)=0\Rightarrow x=0$ hoặc $x=2$

Nếu $x=0$ thì $y=1$

Nếu $x=2\Rightarrow y=-3$

Vậy HPT có nghiệm $y=1; x$ tủy ý hoặc $y=-3; x=2$

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
MT
Xem chi tiết
NL
30 tháng 7 2021 lúc 22:09

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

Bình luận (0)
TB
Xem chi tiết
TB
13 tháng 7 2019 lúc 10:05

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
NL
23 tháng 5 2019 lúc 17:50

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)

\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

Thay vào pt dưới:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)

Bình luận (0)
NL
23 tháng 5 2019 lúc 17:54

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)

\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)

TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:

\(\left(-2y-1\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)

TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:

\(\left(-2y-2\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)

Bình luận (0)
MT
Xem chi tiết
MP
12 tháng 9 2018 lúc 21:36

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

Bình luận (0)
NH
Xem chi tiết