Những câu hỏi liên quan
FF
Xem chi tiết
PM
Xem chi tiết
NT
27 tháng 10 2023 lúc 18:22

loading...  loading...  loading...  

Bình luận (0)
NT
27 tháng 10 2023 lúc 18:31

loading...  loading...  loading...  

Bình luận (0)
NA
Xem chi tiết
KJ
Xem chi tiết
LG
15 tháng 3 2020 lúc 10:51

a,\(a=8;b=7,c=3\)

\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{7^2+3^2-8^2}{2.3.7}=-\frac{1}{7}\) \(\Rightarrow\widehat{A}=98,2^0\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{8^2+3^2-7^2}{2.3.8}=\frac{1}{2}\Rightarrow\widehat{B}=60^0\)

\(\widehat{C}=21,8^0\)

\(b,\frac{b}{sinB}=2R\Rightarrow R=\frac{7}{2.sin60}=\frac{7\sqrt{3}}{3}\)

\(S_{ABC}=\frac{abc}{4R}=\frac{3.7.8}{4.\frac{7\sqrt{3}}{3}}=6\sqrt{3}\)

\(c,r=\frac{S}{p}=6\sqrt{3}:\left(\frac{3+7+8}{2}\right)=\frac{2\sqrt{3}}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
15 tháng 3 2020 lúc 10:58

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HM
Xem chi tiết
NH
Xem chi tiết
NT
1 tháng 12 2023 lúc 17:19

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC\)

\(=\dfrac{1}{2}\cdot5\cdot7\cdot sin120=\dfrac{35\sqrt{3}}{4}\)

Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

=>\(\dfrac{5^2+7^2-AC^2}{2\cdot5\cdot7}=cos120=\dfrac{-1}{2}\)

=>\(25+49-AC^2=-35\)

=>\(AC^2=25+49+35=109\)

=>\(AC=\sqrt{109}\)

Kẻ AH\(\perp\)BC

=>\(h_A=AH\)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)

=>\(\dfrac{1}{2}\cdot AH\cdot7=\dfrac{35\sqrt{3}}{4}\)

=>\(AH\cdot3,5=\dfrac{35\sqrt{3}}{4}\)

=>\(AH=\dfrac{10\sqrt{3}}{4}=\dfrac{5}{2}\sqrt{3}\)

Xét ΔABC có \(\dfrac{AC}{sinB}=2R\)

=>\(2R=\dfrac{\sqrt{109}}{sin120}=\sqrt{109}\cdot\dfrac{2}{\sqrt{3}}\)

=>\(R=\sqrt{\dfrac{109}{3}}=\dfrac{\sqrt{327}}{3}\)

Bình luận (0)
HM
Xem chi tiết
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 23:55

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)

\( \Rightarrow \cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{7^2} + {6^2} - {8^2}}}{{2.7.6}} = \frac{1}{4}\)

Lại có: \({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} \)(do \({0^o} < A \le {90^o}\))

\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{1}{4}} \right)}^2}}  = \frac{{\sqrt {15} }}{4}\)

Áp dụng định lí sin trong tam giác ABC ta có:\(\frac{{BC}}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{8}{{2.\frac{{\sqrt {15} }}{4}}} = \frac{{16\sqrt {15} }}{{15}}.\)

Vậy \(\cos A = \frac{1}{4};\)\(\sin A = \frac{{\sqrt {15} }}{4};\)\(R = \frac{{16\sqrt {15} }}{{15}}.\)

Bình luận (0)