a,\(a=8;b=7,c=3\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{7^2+3^2-8^2}{2.3.7}=-\frac{1}{7}\) \(\Rightarrow\widehat{A}=98,2^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{8^2+3^2-7^2}{2.3.8}=\frac{1}{2}\Rightarrow\widehat{B}=60^0\)
\(\widehat{C}=21,8^0\)
\(b,\frac{b}{sinB}=2R\Rightarrow R=\frac{7}{2.sin60}=\frac{7\sqrt{3}}{3}\)
\(S_{ABC}=\frac{abc}{4R}=\frac{3.7.8}{4.\frac{7\sqrt{3}}{3}}=6\sqrt{3}\)
\(c,r=\frac{S}{p}=6\sqrt{3}:\left(\frac{3+7+8}{2}\right)=\frac{2\sqrt{3}}{3}\)