Những câu hỏi liên quan
NN
Xem chi tiết
V2
18 tháng 9 2015 lúc 20:46

<=>x4-3x3+4x3-12x2+4x2-12x+3x-9=0

<=>x3(x-3)+4x2(x-3)+4x(x-3)+3(x-3)=0

<=>(x-3)(x3+4x2+4x+3)=0

<=>(x-3)(x3+3x2+x2+3x+x+3)=0

<=>(x-3)(x+3)(x2+x+1)=0

<=>x=3 hoặc x=-3

Bình luận (0)
MN
6 tháng 3 2016 lúc 21:45

cái này mà là toán 9 á? Cái này lớp 8 tôi đã biết giải!

Bình luận (0)
NN
Xem chi tiết
CN
Xem chi tiết
LP
Xem chi tiết
NT
4 tháng 3 2019 lúc 19:20

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

Bình luận (0)
BT
4 tháng 3 2019 lúc 19:37
https://i.imgur.com/1LBiPm6.jpg
Bình luận (0)
BT
4 tháng 3 2019 lúc 19:37
https://i.imgur.com/bxLXfh6.jpg
Bình luận (0)
HN
Xem chi tiết
NT
18 tháng 5 2021 lúc 10:25

2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)

Bình luận (0)
NT
18 tháng 5 2021 lúc 10:28

1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)

\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)

\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)

mà \(x^2+x+3>0\forall x\)

nên (x+1)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: S={-1;-3}

Bình luận (0)
HP
Xem chi tiết
HT
23 tháng 5 2016 lúc 16:10

A=\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+1\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\) ( với \(x^4-8x^2-9=x^4-9x^2+x^2-9=x^2\left(x^2-9\right)+\left(x^2-9\right)=\left(x^2-9\right)\left(x^2+1\right)=\left(x-3\right)\left(x+3\right)\left(x^2+1\right)\)  

A= \(\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\) \(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\) \(\Leftrightarrow\left(10x-30\right)\left(x-3\right)+6-2\left(x+3\right)=0\Leftrightarrow-x^2+11x-30=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=5\end{array}\right.\)

Bình luận (0)
H24
12 tháng 7 2023 lúc 16:41

Mày nhìn cái chóa j

Bình luận (0)
HL
Xem chi tiết
TT
11 tháng 9 2017 lúc 17:53

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)

\(\Leftrightarrow\sqrt{x+1}.-13=0\)

\(\Leftrightarrow x=-1\)

Bình luận (0)
HP
Xem chi tiết
LC
23 tháng 5 2016 lúc 15:22

ĐK: \(x\ne-3,3,-2\)

Ta có: \(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-9x^2+x^2-9}-\frac{3x+6}{x^2+3x+2x+6}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^2.\left(x^2-9\right)+\left(x^2-9\right)}-\frac{3x+6}{x.\left(x+3\right)+2.\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6.\left(x^2+1\right)}{\left(x^2+1\right).\left(x^2-9\right)}-\frac{3.\left(x+2\right)}{\left(x+2\right).\left(x+3\right)}-\frac{2}{x-3}=0\)

=>\(\frac{13-x}{x+3}+\frac{6}{x^2-9}-\frac{3}{x+3}-\frac{2}{x-3}=0\)

=>\(\left(\frac{13-x}{x+3}-\frac{3}{x+3}\right)+\left(\frac{6}{x^2-9}-\frac{2}{x-3}\right)=0\)

=>\(\frac{13-x-3}{x+3}+\left[\frac{6}{x^2-9}-\frac{2.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\right]=0\)

=>\(\frac{10-x}{x+3}+\left[\frac{6}{x^2-9}-\frac{2x+6}{x^2-9}\right]=0\)

=>\(\frac{10-x}{x+3}+\frac{6-2x-6}{x^2-9}=0\)

=>\(\frac{\left(10-x\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{-2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30}{x^2-9}-\frac{2x}{x^2-9}=0\)

=>\(\frac{13x-x^2-30-2x}{x^2-9}=0\)

=>\(\frac{11x-x^2-30}{x^2-9}=0\)

Vì \(x\ne-3,3=>x^2\ne0\)

=>11x-x2-30=0

=>6x-30-x2+5x=0

=>6.(x-5)-x.(x-5)=0

=>(6-x).(x-5)=0

=>6-x=0=>x=6

hoặc x-5=0=>x=5

Vậy tập nghiệm của phương trình S=6; 5

Bình luận (0)
VT
23 tháng 5 2016 lúc 14:53

Em ước gì được ên lớp 8 để giúp anh  Hoàng Phúc

Bình luận (0)
TN
23 tháng 5 2016 lúc 14:59

Nobita Kun nó lớp 7 đó cha ko làm thì thôi ai bắt vô cmt

Bình luận (0)
KO
Xem chi tiết
MH
17 tháng 2 2021 lúc 18:17

1/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

2/ \(x^3+3x^2+6x+4=0\)

\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))

\(\Leftrightarrow x=-1\).

3/ \(x^3-6x^2+8x=0\)

\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)

4/ \(x^4-8x^3-9x^2=0\)

\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)

Bình luận (0)