Những câu hỏi liên quan
ND
Xem chi tiết
NT
7 tháng 8 2023 lúc 9:57

\(x^2+3y^2+2xy-18\left(x+y\right)=73\)

\(\Leftrightarrow x^2+3y^2+2xy-18x-18y-73=0\)

\(\Leftrightarrow x^2-2\left(9-y\right)x+3y^2-18y-73=0\)

\(\Delta'=\left(9-y\right)^2-\left(3y^2-18y-73\right)\)

\(=81-18y+y^2-3y^2+18y+73\)

\(=-2y^2+154\)

\(=-2\left(y^2-77\right)\)

Phương trình có nghiệm khi \(\)

\(\Delta'\ge0\Leftrightarrow-2\left(y^2-77\right)\ge0\Leftrightarrow y^2-77\le0\)

\(\Leftrightarrow y^2\le77\Leftrightarrow-\sqrt[]{77}\le y\le\sqrt[]{77}\)

Phương trình có 2 nghiệm là 

\(\left[{}\begin{matrix}x_1=9-y+\sqrt[]{-2\left(y^2-77\right)}\\x_2=9-y-\sqrt[]{-2\left(y^2-77\right)}\end{matrix}\right.\) \(\left(-\sqrt[]{77}\le y\le\sqrt[]{77}\right)\)

Bình luận (0)
HN
7 tháng 8 2023 lúc 9:41

loading...

Bình luận (0)
PA
Xem chi tiết
TD
6 tháng 3 2020 lúc 15:36

\(\Delta\)không thì dùng cách này cho dễ

\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)

\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)

\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)

\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)

\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )

+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )

+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )

+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)

Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
NL
6 tháng 3 2020 lúc 14:42

\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81=8-2y^2\)

\(\Leftrightarrow\left(x+y-9\right)^2=8-2y^2\le8\)

\(\Rightarrow8-2y^2\) là SCP chẵn không lớn hơn 8

\(\Rightarrow\left[{}\begin{matrix}8-2y^2=0\\8-2y^2=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^2=4\\y^2=2\left(ktm\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

- Với \(y=2\Rightarrow x+y-9=0\Rightarrow x=7\)

- Với \(y=-2\Rightarrow x=9-y=11\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
12 tháng 6 2019 lúc 8:52

Điều kiện x ≥ − 7 y ≥ − 1 3 *

x 2 + 2 x y + 8 x = 3 y 2 + 12 y + 9             ( 1 ) x 2 + 4 y + 18 − 6 x + 7 − 2 x 3 y + 1 = 0       ( 2 )

Có 1 ⇔ x 2 + 2 y + 4 x − 3 y 2 − 12 y − 9   = 0 , ta coi (1) là phương trình bậc hai ẩn x và y là tham số, giải x theo y ta được x = − 3 y − 9 x = y + 1

Với x = − 3 y − 9 thì (*) ⇒ − 3 y − 9 ≥ − 7 y ≥ − 1 3 ⇔ y ≤ − 2 3 y ≥ − 1 3 (vô lí)

Hệ phương trình có nghiệm là 2 ; 1 ⇒ a = 2 , b = 1 ⇒ T = 24

Đáp án cần chọn là: A

Bình luận (0)
PD
Xem chi tiết
XO
16 tháng 1 2023 lúc 22:25

x2 - 3y2 + 2xy + 2x - 4y - 7 = 0

<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0

<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0

<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0

<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23

<=> (2x + 2y + 2)2 - (4y + 3)2 = 23

<=> (2x + 6y + 5)(2x - 2y - 1) = 23

\(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\) 

Lập bảng : 

2x + 6y + 5 1 23 -1 -23
2x - 2y - 1 23 1 -23 -1
x 17/2(loại) 3 -9 -7/2(loại)
y   2 2  

Vậy (x;y) = (3;2) ; (-9;2) 

Bình luận (0)
NH
Xem chi tiết
NL
8 tháng 3 2021 lúc 23:14

\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)

\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)

\(\Leftrightarrow-236y^2+668y-431\ge0\)

\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)

\(\Rightarrow y=1\)

Thế vào pt đầu ...

Bình luận (0)
NL
Xem chi tiết
NT
23 tháng 9 2021 lúc 15:30

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 8:24

Đáp án C

Bình luận (0)
TD
Xem chi tiết
MP
31 tháng 8 2018 lúc 17:27

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

Bình luận (0)