Những câu hỏi liên quan
H24
Xem chi tiết
NL
26 tháng 11 2021 lúc 21:14

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

Bình luận (0)
NL
26 tháng 11 2021 lúc 21:16

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
LT
Xem chi tiết
KK
4 tháng 9 2016 lúc 22:12

Ptrình này vô nghiệm bn ạ

Bình luận (0)
H24
Xem chi tiết
DG
Xem chi tiết
NC
Xem chi tiết
NL
14 tháng 1 2021 lúc 13:15

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

Bình luận (1)
NL
14 tháng 1 2021 lúc 13:15

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (1)
NL
14 tháng 1 2021 lúc 13:21

3.

ĐKXĐ: ...

Từ pt dưới:

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow y=x-2\)

Thế vào pt trên:

\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)

\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)

\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)

\(\Leftrightarrow x^2-5x+2=0\)

Bình luận (2)
MH
Xem chi tiết
H24
16 tháng 3 2017 lúc 23:06

gợi ý nè

1) \(ab+c=ab+c\left(a+b+c\right)\)....

2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay

đặt \(\sqrt{x}=a,\sqrt{y}=b\)

=>a3+b3=a4+b4=a5+b5

c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......

c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)

=> 1=(a+b)-ab .......

3) try use UCT

4) tính sau =))

Bình luận (3)
TA
Xem chi tiết
TN
Xem chi tiết
TQ
17 tháng 8 2015 lúc 10:19

a/ x= \(\sqrt{3}-2\)

b/ ko tồn tại nghiệm số thực

x \(\in\phi\)

Bình luận (0)
LD
6 tháng 9 2020 lúc 12:13

a)\(\sqrt{\left(x^2-4x+1\right)}-2=2x\)

\(\Leftrightarrow\sqrt{\left(x^2-4x+1\right)}=2x+2\)

ĐKXĐ : \(2x+2\ge0\Leftrightarrow x\ge-1\)

Bình phương hai vế

\(\Leftrightarrow x^2-4x+1=\left(2x+2\right)^2\)

\(\Leftrightarrow x^2-4x+1=4x^2+8x+4\)

\(\Leftrightarrow4x^2+8x+4-x^2+4x-1=0\)

\(\Leftrightarrow3x^2+12x+3=0\)(*)

\(\Delta=b^2-4ac=\left(12\right)^2-4\cdot3\cdot3=144-36=108\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-12+\sqrt{108}}{6}=-2+\sqrt{3}=\sqrt{3}-2\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-12-\sqrt{108}}{6}=-2-\sqrt{3}=-\sqrt{3}-2\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy \(\sqrt{3}-2\)tmđk

Vậy phương trình có nghiệm duy nhất là x = \(\sqrt{3}-2\)

b) \(\sqrt{\left(4-x+2x^2\right)}=x-3\)

ĐKXĐ : \(x-3\ge0\Leftrightarrow x\ge3\)

Bình phương hai vế

\(\Leftrightarrow2x^2-x+4=\left(x-3\right)^2\)

\(\Leftrightarrow2x^2-x+4=x^2-6x+9\)

\(\Leftrightarrow2x^2-x+4-x^2+6x-9=0\)

\(\Leftrightarrow x^2+5x-5=0\)(*)

\(\Delta=b^2-4ac=5^2-4\cdot1\cdot\left(-5\right)=25+20=45\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-5+\sqrt{45}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-5-\sqrt{45}}{2}\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy hai nghiệm không thỏa mãn

Vậy phương trình vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
VQ
Xem chi tiết
NT
20 tháng 11 2022 lúc 20:37

Bài 1:

a: TH1: m=-2

Pt sẽ là \(-2\left(-2-1\right)x-2-2=0\)

=>2x-4=0

=>x=2

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-4\left(m+2\right)\left(m-2\right)\)

\(=4m^2-8m+4-4\left(m^2-4\right)\)

=4m^2-8m+4-4m^2+16=-8m+20

Để phương trình vô nghiệm thì -8m+20<0

=>-8m<-20

=>m>5/2

Để phương trình có nghiệm duy nhất thì -8m+20=0

=>m=5/2

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>m<5/2

Bình luận (0)