Bài 2. Tìm số tự nhiên x, biết:
a) 120⋮𝑥;240⋮𝑥,300⋮𝑥,𝑥≥10
b) 𝑥⋮16;𝑥⋮15;𝑥⋮11,𝑥<3000
a) 2x + 15 = 45
2x = 45 - 15
2x = 30
x = 30 : 2
x = 15 (nhận)
Vậy x = 15
b) 120 - 2.(x + 3) = 22.52
120 - 2.(x + 3) = 1144
2.(x + 3) = 120 - 1144
2.(x + 3) = - 1024
x + 3 = -1024 : 2
x + 3 = -512
x = - 512 - 3
x = -515 (loại)
Vậy không tìm được x thỏa mãn x là số tự nhiên
c) 11 ⋮ (x - 2)
⇒ x - 2 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ x ∈ {-9; 1; 3; 13}
Do x là số tự nhiên
⇒ x ∈ {1; 3; 13}
d) Do 12 ⋮ x và 18 ⋮ x nên x ∈ ƯC(12; 18)
12 = 2².3
18 = 2.3²
ƯCLN(12; 18) = 2.3 = 6
⇒ x ∈ ƯC(12; 18) = {1; ; 3; 6}
Câu 17. Tìm tất cả các số tự nhiên n sao cho (n – 1) là ước của (3.n + 6)
Câu 22: Cho A = 3 + 32 + 33 + …. + 32025 .Câu 17
Để n - 1 là ước của 3n + 6 thì (3n + 6) ⋮ (n - 1)
Ta có:
3n + 6 = 3n - 3 + 9 = 3(n - 1) + 9
Để (3n + 6) ⋮ (n - 1) thì 9 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ n ∈ {-8; -2; 0; 2; 4; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 4; 10}
Câu 22
A = 3 + 3² + 3³ + ... + 3²⁰²⁵
⇒ 3A = 3² + 3³ + 3⁴ + ... + 3²⁰²⁶
⇒ 2A = 3A - A
= (3² + 3³ + 3⁴ + ... + 3²⁰²⁶) - (3 + 3² + 3³ + ... + 3²⁰²⁵)
= 3²⁰²⁶ - 3
⇒ 2A + 3 = 3²⁰²⁶ - 3 + 3
⇒ 2A + 3 = 3²⁰²⁶
Mà 2A + 3 = 3ⁿ
⇒ 3ⁿ = 3²⁰²⁶
⇒ n = 2026
Câu 20:
a) x + 198 = 203
x = 203 - 198
x = 5
b) 3(x - 4) - 123 = 15
3(x - 4) = 15 + 123
3(x - 4) = 138
x - 4 = 138 : 3
x - 4 = 46
x = 46 + 4
x = 50
c) 3.4ˣ⁻² - 156 = 6²⁰²⁴ : 6²⁰²²
3.4ˣ⁻² - 156 = 6²
3.4ˣ⁻² - 156 = 36
3.4ˣ⁻² = 36 + 156
3.4ˣ⁻² = 192
4ˣ⁻² = 192 : 3
4ˣ⁻² = 64
4ˣ⁻² = 4³
x - 2 = 3
x = 3 + 2
x = 5
d) 2ˣ⁺¹ - 2ˣ = 32
2ˣ.(2 - 1) = 2⁵
2ˣ = 2⁵
x = 5
Bài 1: Tìm các số tự nhiên x, y sao cho: a)𝑥 𝜖 𝐵(5) 𝑣à 21 ≤ 𝑥 ≤ 36; b)𝑥 𝜖 𝐵(8) 𝑣à 18 ≤ 𝑥 < 72 c)𝑥 𝜖 Ư(12) 𝑣à 2 < 𝑥 ≤ 8; d)𝑥 𝜖 Ư(24) 𝑣à 𝑥 < 18 e)𝑥 ⋮ 15 𝑣à 0 < 𝑥 ≤ 40; f)18 ⋮ 𝑥 𝑣à 2 ≤ 𝑥 < 12 g) 6̅̅𝑥̅̅7̅ ⋮ 3 h) ̅𝑥̅̅45̅̅̅𝑦̅ ⋮ 2, 3,5 𝑣à9
a: \(x\in\left\{25;30;35\right\}\)
b: \(x\in\left\{24;32;40;48;56;64\right\}\)
c: \(x\in\left\{3;4;6\right\}\)
Câu 16: Tìm số tự nhiên x biết
a)2x + 5 = 34 . 32.
𝑏) 120 – (𝑥 + 55) = 60.
c)x ⋮ 12 và x < 60.
a) \(\Leftrightarrow2x+5=3^6\\ \Leftrightarrow2x+5=729\\ \Leftrightarrow x=362\)
b) \(\Leftrightarrow x+55=60\\ \Leftrightarrow x=5\)
c) \(x=\left\{12;24;36;48\right\}\)
c) x ⋮ 12 và x < 60
x ∈ B(12) = { 0 ; 12 ; 24 ; 36 ; 48 ; 60 ;...}
mà x ⋮ 12 và x < 60
nên x ∈ B(12)= { 0 ; 12 ; 24 ; 36 ; 48 }
Bài 4. Cho biểu thức M = \(\dfrac{\sqrt{x+2}}{2\sqrt{x}-3}\)với 𝑥 ≥ 0; 𝑥 ≠ 9 4 . Tìm gía trị nguyên của x để M có giá trị là một số tự nhiên
Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$
$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$
$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$
Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên
$\Rightarrow 3M-2\vdots 2M-1$
$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$
$\Rightarrow 2M-1\in\left\{\pm 1\right\}$
$\Rightarrow M=0;1$
$\Leftrightarrow x=4; 1$ (đều tm)
Tìm số tự nhiên x, biết:
a)
𝑥:[(1800+600)∶30] = 560:(315 –35)
b)
[(250−25):15]:𝑥 =(450−60):130
a)x:[(1800+600):30] = 560:(315 -35)
x: [2400:30] = 560:280
x:80=560:280
x:80=2
x=2x80
=160
*sai thì srr nha*
ax:[(1800+600):30]=560:(315-35)
x:[2400:30]=560:280
x:80=2
x=2.80
x=160
b[(250-25):15]:x=(450-60):130
[225:15]:x=390:130
15:x=3
x=15:3
x=5
Bài 1 Tìm x biết: x+1 thuộc bội của 8 mà 24<x<100
Bài 2 Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a chia hết cho 120 và 86
Bài 3 Tìm số tự nhiên a lớn nhất biết 90 và 60 chia hết cho a
Mình cần gấp
bài 1 tìm 2 số tự nhiên a,b biết tích của chúng bằng 2940 và bcnn bằng 210
bài 2 chứng minh tích 5 số tự nhiên iên tiếp thì chia hết cho 120
1 /
Với công thức ab = ƯCLN(a; b).BCNN(a; b)
nên suy ra ƯCLN(a; b) = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n (\(m\ge n\))
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : (14.14) = 15
Vì \(m\ge n\) nên 15 = 5.3 = 15.1
-Với m = 5 ; n = 3 thì a = 70 ; b = 42
-Với m = 15 ; n = 1 thì a = 210 ; b =1
2 /
Gọi 5 số tự nhiên liên tiếp là a; a + 1; a + 2; a + 3; a + 4
=> Tích của chúng là a(a+1)(a+2)(a+3)(a+4)
Trong tích của 5 số tự nhiên liên tiếp có ít nhất tích 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp chia hết cho 8 nên => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8 (1)
Tích của 5 số tự nhiên liên tiếp thì luôn chia hết cho 5 (vì trong tích có ít nhất 1 số chia hết cho 5) => a(a+1)(a+2)(a+3)(a+4) chia hết cho 5 (2)
Trong tích của 5 số tự nhiên liên tiếp có tích của 3 STN liên tiếp. Tích của 3 STN liên tiếp thì chia hết cho 3 => a(a+1)(a+2)(a+3)(a+4) chia hết cho 3 (3)
Từ (1), (2), (3) và 8,3,5 là các số đôi một nguyên tố cùng nhau nền => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8.5.3 = 120
Vậy tích 5 STN liên tiếp luôn chia hết cho 120.