H24

Bài 4. Cho biểu thức M = \(\dfrac{\sqrt{x+2}}{2\sqrt{x}-3}\)với 𝑥 ≥ 0; 𝑥 ≠ 9 4 . Tìm gía trị nguyên của x để M có giá trị là một số tự nhiên

AH
10 tháng 8 2021 lúc 10:59

Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$

$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$

$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$

Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên 

$\Rightarrow 3M-2\vdots 2M-1$

$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$

$\Rightarrow 2M-1\in\left\{\pm 1\right\}$

$\Rightarrow M=0;1$

$\Leftrightarrow x=4; 1$ (đều tm)

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
LP
Xem chi tiết
HP
Xem chi tiết
CP
Xem chi tiết
NK
Xem chi tiết
BM
Xem chi tiết
HN
Xem chi tiết
MD
Xem chi tiết
DN
Xem chi tiết