Những câu hỏi liên quan
HA
Xem chi tiết
NT
4 tháng 12 2023 lúc 20:46

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{\dfrac{3}{x}-\sqrt{1+\dfrac{7}{x^2}}}\)

\(=\dfrac{1}{0-\sqrt{1+0}}=\dfrac{1}{-1}=-1\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)

\(=\dfrac{\sqrt{x^2\left(1-\dfrac{1}{x}\right)}-\sqrt{x^2\left(4+\dfrac{1}{x^2}\right)}}{2x+3}\)

\(=\dfrac{-x\cdot\sqrt{1-\dfrac{1}{x}}+x\cdot\sqrt{4+\dfrac{1}{x^2}}}{x\left(2+\dfrac{3}{x}\right)}\)

\(=\dfrac{-\sqrt{1-\dfrac{1}{x}}+\sqrt{4+\dfrac{1}{x^2}}}{2+\dfrac{3}{x}}=\dfrac{-1+2}{2}=\dfrac{1}{2}\)

Bình luận (0)
JE
Xem chi tiết
ND
14 tháng 3 2021 lúc 22:56

Sao anh không thấy đề cụ thể ta!

Bình luận (2)
TP
15 tháng 3 2021 lúc 7:18

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{\dfrac{4x^2+2x-1}{x^2}}-\dfrac{x}{x}}{\dfrac{3x-2}{x}}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4+\dfrac{2}{x}-\dfrac{1}{x^2}}-1}{3-\dfrac{2}{x}}=-\dfrac{4-1}{3}=-1\)

Bình luận (0)
TH
15 tháng 3 2021 lúc 11:50

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4+\dfrac{2}{x}-\dfrac{1}{x^2}}+1}{-3+\dfrac{2}{x}}=\dfrac{\sqrt{4}+1}{-3}=-1\).

Bình luận (0)
TT
Xem chi tiết
NL
15 tháng 3 2020 lúc 22:59

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
15 tháng 3 2020 lúc 23:02

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
NT
4 tháng 12 2023 lúc 21:04

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}+\dfrac{2}{x^2}}}{1-\dfrac{1}{x}}=\dfrac{\sqrt{1+0+0}}{1-0}\)

\(=\dfrac{1}{1}\)

=1

b: \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-x-4x^2}{\sqrt{4x^2-x}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{\sqrt{x^2\left(4-\dfrac{1}{x}\right)}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{-x\sqrt{4-\dfrac{1}{x}}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1}{\sqrt{4-\dfrac{1}{x}}+2}=\dfrac{1}{\sqrt{4}+2}=\dfrac{1}{2+2}=\dfrac{1}{4}\)

Bình luận (0)
TT
Xem chi tiết
HH
24 tháng 1 2021 lúc 12:44

a/ L'Hospital:

 \(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)

b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)

Bình luận (0)
H24
Xem chi tiết
NL
27 tháng 2 2020 lúc 10:49

\(=\frac{\left|x\right|\sqrt{1+\frac{2}{x}}+3x}{\left|x\right|\sqrt{4+\frac{1}{x^2}}-x+3}=\frac{-x\left(\sqrt{1+\frac{2}{x}}-3\right)}{-x\left(\sqrt{4+\frac{1}{x^2}}+1+\frac{3}{x}\right)}=\frac{1-3}{2+1+0}=...\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KL
29 tháng 2 2020 lúc 9:54

undefined

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
NT
30 tháng 1 2023 lúc 22:56

a: \(=lim_{x->-\infty}\dfrac{2x-5+\dfrac{1}{x^2}}{7-\dfrac{1}{x}+\dfrac{4}{x^2}}\)

\(=\dfrac{2x-5}{7}\)

\(=\dfrac{2}{7}x-\dfrac{5}{7}\)

\(=-\infty\)

b: \(=lim_{x->+\infty}x\sqrt{\dfrac{1+\dfrac{1}{x}+\dfrac{3}{x^2}}{3x^2+4-\dfrac{5}{x^2}}}\)

\(=lim_{x->+\infty}x\sqrt{\dfrac{1}{3x^2+4}}=+\infty\)

Bình luận (0)
LN
Xem chi tiết
NL
3 tháng 4 2020 lúc 20:21

\(a=\lim\limits_{x\rightarrow-3}\frac{x^2+2x-3}{x\left(x+3\right)\left(x-\sqrt{3-2x}\right)}=\lim\limits_{x\rightarrow-3}\frac{\left(x-1\right)\left(x+3\right)}{x\left(x+3\right)\left(x-\sqrt{3-2x}\right)}=\lim\limits_{x\rightarrow-3}\frac{x-1}{x\left(x-\sqrt{3-2x}\right)}=-\frac{2}{9}\)

\(b=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+9}-3+\sqrt{x+16}-4}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{x+9}+3}+\frac{x}{\sqrt{x+16}+4}}{x}=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}\right)=\frac{7}{24}\)

\(c=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{8x^2-1}{6x^2-5x+1}\) ko phải dạng vô định, đề bài là \(8x^2\) hay \(8x^3\) bạn?

\(d=\lim\limits_{x\rightarrow0}\frac{\left(\sqrt{x^2+1}-1\right)\left(\sqrt{x^2+1}+1\right)\left(4+\sqrt{x^2+16}\right)}{\left(4-\sqrt{x^2+16}\right)\left(4+\sqrt{x^2+16}\right)\left(\sqrt{x^2+1}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\frac{x^2\left(4+\sqrt{x^2+16}\right)}{-x^2\left(\sqrt{x^2+1}+1\right)}=\lim\limits_{x\rightarrow0}\frac{4+\sqrt{x^2+16}}{-\sqrt{x^2+1}-1}=\frac{8}{-2}=-4\)

Bình luận (0)
 Khách vãng lai đã xóa