Những câu hỏi liên quan
PB
Xem chi tiết
CT
12 tháng 6 2017 lúc 3:34

Chọn A.

Bất phương trình m 2 x + m(x + 1) - 2(x - 1) > 0 có nghiệm đúng với mọi x ∈ [-2;1] khi và chỉ khi

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2) Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 9 2017 lúc 3:47

Chọn A.

Đặt: f(x) = ( m 2  + m – 2)x + m + 2

Bài toán thỏa mãn:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 4)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 4)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 5 2018 lúc 8:01

Phương trình viết lại  m 2 - 4 x = 3 m - 6

Phương trình đã cho vô nghiệm khi  m 2 − 4 = 0 3 m − 6 ≠ 0 ⇔ m = ± 2 m ≠ 2 ⇔ m = − 2

Do đó, phương trình đã cho có nghiệm khi m ≠ −2.

Đáp án cần chọn là: B

Bình luận (0)
LN
Xem chi tiết
NL
1 tháng 4 2021 lúc 16:31

\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x^2+4x+3m+1=\left(x+3\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\m=\dfrac{2x+8}{3}\end{matrix}\right.\)

Mà \(x\ge-3\) nên pt đã cho có nghiệm khi \(m\ge\dfrac{2.\left(-3\right)+8}{3}=\dfrac{2}{3}\)

Bình luận (0)
DT
Xem chi tiết
BT
21 tháng 3 2021 lúc 20:31

a, Với m=1 thay vào pt 

Ta có

\(x^2+x-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

b, 

Thay x=2 vào pt

ta có

\(4-2-3m+2=0\)

\(\Leftrightarrow4-3m=0\)

\(\Rightarrow m=\dfrac{4}{3}\)

c, Ta có

\(\Delta=1-4\left(-3m+2\right)\)

\(=12m-7\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow12m-7>0\)

\(\Rightarrow m>\dfrac{7}{12}\)

d, 

Để ptcos nghiệm kép thì \(\Delta=0\)

\(\Rightarrow12m-7=0\)

\(\Rightarrow m=\dfrac{7}{12}\)

e, 

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Rightarrow m< \dfrac{7}{12}\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 6 2017 lúc 12:06

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy 

Bình luận (0)
HA
Xem chi tiết
NM
14 tháng 9 2021 lúc 8:11

\(a,x=-1\\ \Leftrightarrow1-2\left(m+1\right)+m^2-3m=0\\ \Leftrightarrow-1-5m+m^2=0\\ \Leftrightarrow m^2-5m-1=0\\ \Delta=25+4=29\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)

\(b,\)Pt có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+12m>0\\ \Leftrightarrow20m+4>0\Leftrightarrow m>-\dfrac{1}{5}\)

\(c,\)Để pt có nghiệm duy nhất (nghiệm kép)

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)=0\\ \Leftrightarrow20m+4=0\\ \Leftrightarrow m=-\dfrac{1}{5}\)

 

 

 

Bình luận (0)
2L
Xem chi tiết
NT
11 tháng 7 2023 lúc 23:24

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

Bình luận (0)
2L
Xem chi tiết
KK
28 tháng 3 2022 lúc 21:17

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

Bình luận (0)
MN
Xem chi tiết
QB
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Bình luận (0)
NT
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Bình luận (0)