Những câu hỏi liên quan
HM
Xem chi tiết
NC
Xem chi tiết
NL
6 tháng 3 2021 lúc 0:15

Khi \(x\ge0\Rightarrow2x+1>0\) nên BPT tương đương:

\(x^2-3x+m>\left(2x+1\right)^2\)

\(\Leftrightarrow x^2-3x+m>4x^2+4x+1\)

\(\Leftrightarrow3x^2+7x+1< m\)

Xét hàm \(f\left(x\right)=3x^2+7x+1\) trên \(\left[0;2\right]\)

\(-\dfrac{b}{2a}=-\dfrac{7}{6}\notin\left[0;2\right]\) ; \(f\left(0\right)=1\) ; \(f\left(2\right)=27\)

\(\Rightarrow f\left(x\right)\ge1\Rightarrow\) pt có nghiệm trên đoạn đã cho khi \(m>1\)

Bình luận (0)
TV
Xem chi tiết
H24
Xem chi tiết
HP
19 tháng 3 2021 lúc 17:15

1.

\(2\left|x-m\right|+x^2+2>2mx\)

\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)

\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)

\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)

Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)

\(\Leftrightarrow-\sqrt{2}< m< 2\)

Vậy \(-\sqrt{2}< m< 2\)

Bình luận (0)
HP
19 tháng 3 2021 lúc 17:25

2.

\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)

Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)

\(\Leftrightarrow2m^2-3m+1< 0\)

\(\Leftrightarrow\dfrac{1}{2}< m< 1\)

Bình luận (0)
HM
Xem chi tiết
NT
21 tháng 1 2024 lúc 19:56

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

Bình luận (0)
NH
Xem chi tiết
HT
Xem chi tiết
NL
8 tháng 3 2021 lúc 23:01

\(\Leftrightarrow\sqrt{-x^2-2x+15}\le x^2+2x+m\)

\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)

Đặt \(t=-x^2-2x+15\Rightarrow0\le t\le4\)

\(\Rightarrow t^2+t-15\le m\) với \(t\in\left[0;4\right]\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;4\right]}\left(t^2+t-15\right)\)

Xét \(f\left(t\right)=t^2+t-15\) trên [0;4]

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)

\(\Rightarrow f\left(t\right)\le5\Rightarrow m\ge5\)

Bình luận (2)
DT
Xem chi tiết
NL
28 tháng 4 2020 lúc 20:09

Bạn tham khảo:

Câu hỏi của Nguyễn Thảo Hân - Toán lớp 10 | Học trực tuyến

Bình luận (0)
H24
Xem chi tiết