giải pt :
(x-3)^4-3(\(x^2\)-6x+10)=1
Giải pt :
a)x5+x-1=0
b)x4+6x3+7x2-6x+1=0
c)x(x+4)(x+6)(4x+10)+128=0
a)x5+x-1=0
<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0
<=>(x4+x3+x2+x+1)(x-1)=0
Do x4+x3+x2+x+1>0
=>x+1=0
<=>x=1
B1:Giải pt vô tỉ sau 4\(x^4\)+\(x^2\)+3x+4=3\(\sqrt[3]{16x^3+12x}\)
B2:Giải pt vô tỉ sau 4\(x^2\)-11x+10=(x-1)\(\sqrt{2x^2-6x+2}\)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
Chi tiết một chút!
Bài 2:
ĐKXĐ:....
Đặt \(\sqrt{2x^2-6x+2}=t\ge0\Rightarrow2x^2-6x+2=t^2\)
Viết lại pt dưới dạng:
\(t^2+\left(x-1\right)t-6x^2+17x-12=0\)
\(\Leftrightarrow\left(t-2x+3\right)\left(t+3x-4\right)=0\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Giải pt: \(2x^2-6x+7=2\sqrt{x^4-6x^3+15x^2-18x+10}\)
giải pt trên:
\(x^4+x^3+6x^2=-5\left(x+1\right)\)
=>(x^2+5)(x^2+x+1)=0
=>x^2+5=0(loại) hoặc x^2+x+1=0(loại)
\(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{-x^2+6x-8}\)
Giải pt
\(\Leftrightarrow\dfrac{2}{-x^2+6x-8}=\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\\ \Leftrightarrow\left\{{}\begin{matrix}2=\left(-x^2+6x-8\right)\left(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\right)\\-x^2+6x-8\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2=-2x^2+4x+2\\-x^2+6x-8\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\-x^2+6x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\-x^2+6x-8\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\-x^2+6x-8\ne\end{matrix}\right.\end{matrix}\right.\\\Rightarrow x=0\)
1) Giải các pt:
a) 3(x - 1) - 2(x + 3)= -15
b) 3(x - 1) + 2= 3x - 1
c) 7(2 - 5x) - 5= 4(4 -6x)
2) Giải các pt phân thức: ( Tìm mẫu chung )
a) \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
b) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
1)giải pt \(x^3-9x^2+6x-6-3\sqrt[3]{6x^2+2}=0\)
2) giải hệ pt \(\int^{\sqrt{x}\left(1+\frac{3}{x+3y}\right)=2}_{\sqrt{7y}\left(1-\frac{3}{x+3y}\right)=4\sqrt{2}}\)
Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)
Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\) Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được
\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)
Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
1. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
2. Giải pt:
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!