Cho A = \(-a+2\sqrt{a}\)
Tìm giá trị của x để giá trị A là một số dương
help me
Cho biểu thức A=\(\frac{\sqrt{x}-3}{\sqrt{x}+2}\)
a) Tính giá trị của A tại x=\(\frac{1}{4}\)
b) Tính giá trị của x để A = -1
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên
HEPL ME!Nhanh đúng tik cho heng
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
Cho biểu thức: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
a/ Tìm điều kiện xác định của biểu thức A
b/ Rút gọn A
c/ Tìm các giá trị nguyên của x để giá trị A là một số nguyên.
Cho
A= \(\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right).\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
a) Tìm điều kiện và rút gọn
b) Tìm các giá trị nguyên của a để giá trị của A là một số nguyên
a) ĐKXĐ: a\(\ge\)0, a\(\ne\)1
A=(\(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
A=\(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
A=\(\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)=\(\dfrac{2}{a-1}\)
b) Để A\(\in\)Z\(\Rightarrow\)x-1\(\in\) Ư(2)=\(\left\{-1,1,-2,2\right\}\)
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
vì x\(\ge\)0,x\(\ne\)1 nên x\(\in\)\(\left\{-1,0,2,3\right\}\)
1. Cho biểu thức A= \(\sqrt{4-2x}\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.
c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?
2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)
a) Tìm điều kiện của X để biểu thức P xác định..
b) Tính giá trị của biểu thức khi x=4, x=100
c) Tìm giá trị của x để P=1, P=7
d) Tìm các số nguyên x để giá trị của P cũng là một số nguyên.
3. Cho biểu thức \(\frac{2\sqrt{x}+9}{\sqrt{x}+1}\)
a) Tìm điều kiện xác định của x để biểu thức Q được xác định.
b) Tính giá trị của biểu thức khi x=0,x=1,x=16.
c) Tìm giá trị của x để Q=1,Q=10.
d) Tìm các số nguyên x để giá trị của Q cũng là một số nguyên.
Giải hộ với ạ! Gấp lắm T.T
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)
b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)
Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)
c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)
\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)
d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng:
\(2\sqrt{x}-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(\sqrt{x}\) | \(2\) | \(1\) | \(3\) | \(0\) | \(6\) | \(-3\) |
\(x\) | \(4\) | \(1\) | \(9\) | \(0\) | \(36\) | \(L\) |
Vậy \(x\in\left\{1;4;9;0;36\right\}\)
a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1
\(A=\dfrac{x}{\sqrt{x}+1}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}\)
Cho hai biểu thức A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)và B= \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
a) Tính giá trị của A khi x= 4-\(2\sqrt{3}\)
b) Tìm x để A>0
c) Rút gọn B
d) Tìm giá trị nguyên của x để giá trị của biểu thức A: B nguyên
Cho M=\(\dfrac{7\sqrt{a}-2}{2\sqrt{a}+1}\). Tìm các giá trị của a để M nhận giá trị là số nguyên dương
\(M=\dfrac{7\sqrt{a}-2}{2\sqrt{a}+1}\left(đk:a\ge0\right)=\dfrac{3\left(2\sqrt[]{a}+1\right)+\sqrt{a}-5}{2\sqrt{a}+1}=3+\dfrac{\sqrt{a}-5}{2\sqrt{a}+1}\)
Để \(M\in Z,M>0\) thì \(\sqrt{a}-5\ge0\Leftrightarrow a\ge25\) và:
\(\left\{{}\begin{matrix}\sqrt{a}-5⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2\sqrt{a}-10⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)
\(\Rightarrow\left(2\sqrt{a}+1\right)-\left(2\sqrt{a}-10\right)⋮2\sqrt{a}+1\)
\(\Rightarrow11⋮2\sqrt{a}+1\Rightarrow2\sqrt{a}+1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Do \(\sqrt{a}\ge0\forall a\)
\(\Rightarrow\sqrt{a}\in\left\{0;5\right\}\)
\(\Rightarrow a\in\left\{0\left(loại\right);25\left(nhận\right)\right\}\)
Cho biểu thức A=\(\dfrac{x}{\sqrt[]{x}}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}vớix>0\)
a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1
a: \(A=\sqrt{x}+\dfrac{\sqrt{x}\left(1+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\sqrt{x}+\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Khi x=4 thì \(A=2+\dfrac{2\cdot2+1}{2+1}=2+\dfrac{5}{3}=\dfrac{11}{3}\)
b: Khi x=(2-căn 3)^2 thì \(A=2-\sqrt{3}+\dfrac{2\left(2-\sqrt{3}\right)+1}{2-\sqrt{3}+1}\)
\(=2-\sqrt{3}+\dfrac{4-2\sqrt{3}+1}{3-\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\left(3-\sqrt{3}\right)+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{6-2\sqrt{3}-3\sqrt{3}+3+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{14-7\sqrt{3}}{3-\sqrt{3}}\)
d: A=2
=>\(\dfrac{x+\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}+1}=2\)
=>\(x+3\sqrt{x}+1=2\left(\sqrt{x}+1\right)=2\sqrt{x}+2\)
=>\(x+\sqrt{x}-1=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{-1+\sqrt{5}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{-1-\sqrt{5}}{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{6-2\sqrt{5}}{4}=\dfrac{3-\sqrt{5}}{2}\)
Cho biểu thức A=\(\dfrac{x}{\sqrt{x}+1}\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}\)
a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1