Những câu hỏi liên quan
VN
Xem chi tiết
VN
18 tháng 8 2021 lúc 18:42

các bn ơi giúp mình với

 

Bình luận (0)
CP
Xem chi tiết
NL
12 tháng 1 2021 lúc 18:02

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

Bình luận (1)
KD
Xem chi tiết
H24
27 tháng 5 2022 lúc 21:34

undefined

Bình luận (0)
DP
27 tháng 5 2022 lúc 22:55

phương trình(2): x2+xy-2y=4(x-1)

                         ⇔(x2-4x+1)+y(x-2)=0

                         ⇔(x-2)(x+y-2)=0 

giải ra 2 trường hợp thay vào phương trình (1)                      

Bình luận (0)
KK
Xem chi tiết
PA
Xem chi tiết
NM
7 tháng 11 2021 lúc 12:42

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
HK
11 tháng 1 2022 lúc 6:33

\(x^2y+2y+x=4xy< =>xy\left(x+3\right)=4xy< =>x+3=4< =>x=1\)

Thế x=1 vào 1 trong 2 phương trình => y=1

Bình luận (0)
PH
Xem chi tiết
NL
8 tháng 4 2021 lúc 1:17

\(\Rightarrow\left\{{}\begin{matrix}x^3+y^3=65\\3x^2y+3xy^2=60\end{matrix}\right.\)

\(\Rightarrow x^3+3x^2y+3xy^2+y^3=125\)

\(\Leftrightarrow\left(x+y\right)^3=125\Leftrightarrow x+y=5\Rightarrow y=5-x\)

Thế vào pt đầu:

\(x^3+\left(5-x\right)^3=65\)

\(\Leftrightarrow x^2-5x+4=0\Rightarrow\left[{}\begin{matrix}x=1;y=4\\y=4;y=1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
AH
4 tháng 9 2021 lúc 9:52

Lời giải:

Lấy $x.\text{PT(1)}+y.\text{PT(2)}$ thu được:
$3x^3+y^3=-2x^2y^2$

Lấy $x.\text{PT(1)}-y\text{PT(2)}$ thu được:

$3x^3-y^3=4xy$

$\Rightarrow y^3=-x^2y^2-2xy$

PT (2)$\Leftrightarrow 2x^2y+2y^2=-4x$

$\Leftrightarrow 2x^2y+y(xy^2+3x^2)=-4x$

$\Leftrightarrow x[2xy+y(y^2+3x)]=-4x$

$\Leftrightarrow x(y^3+5xy)=-4x$

$\Leftrightarrow x=0$ hoặc $y^3+5xy=-4$

Nếu $x=0$ thì dễ tìm $y=0$

Nếu $y^3+5xy=-4$

$\Leftrightarrow -x^2y^2-2xy+5xy=-4$

$\Leftrightarrow -(xy)^2+3xy+4=0$

$\Leftrightarrow (4-xy)(xy+1)=0$

$\Leftrightarrow xy=4$ hoặc $xy=-1$

Nếu $xy=4$ thì:

$y^3=-4-5xy=-24\Rightarrow y=\sqrt[3]{-24}$

$x^3=\frac{y^3+4xy}{3}=\frac{-8}{3}\Rightarrow x=\sqrt[3]{\frac{-8}{3}}$ (tm)

Nếu $xy=-1$ thì:

$y^3=-4-5xy=1\Rightarrow y=1$

$x^3=\frac{y^3+4xy}{3}=-1\Rightarrow x=-1$ (tm)

Vậy..........

Bình luận (0)
NH
Xem chi tiết
KR
Xem chi tiết
PQ
13 tháng 12 2020 lúc 15:37

\(\left\{{}\begin{matrix}x^3+xy^2+3\left(x-2y\right)=0\\x^2+xy=3\end{matrix}\right.\)\(\Rightarrow x^3+xy^2+\left(x^2+xy\right)\left(x-2y\right)=0\)\(\Leftrightarrow x^3+xy^2+x^3-x^2y-2xy^2=0\Leftrightarrow2x^3-x^2y-xy^2=0\)\(\Leftrightarrow x\left(2x+y\right)\left(x-y\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=-2x\\x=y\end{matrix}\right.\)

+) \(x=0\Rightarrow0y=3\)(vô nghiệm)

+) y=-2x \(\Rightarrow x^2-2x^2=3\Leftrightarrow-x^2=3\)(vô nghiệm)

+) x=y\(\Rightarrow2x^2=3\Leftrightarrow x^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt{\dfrac{3}{2}}\\x=y=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

 

Bình luận (0)