Chương III - Hệ hai phương trình bậc nhất hai ẩn

H24

Giải hệ phương trình \(\left\{{}\begin{matrix}xy^2+3x^2=2y\\x^2y+y^2=-2x\end{matrix}\right.\)

AH
4 tháng 9 2021 lúc 9:52

Lời giải:

Lấy $x.\text{PT(1)}+y.\text{PT(2)}$ thu được:
$3x^3+y^3=-2x^2y^2$

Lấy $x.\text{PT(1)}-y\text{PT(2)}$ thu được:

$3x^3-y^3=4xy$

$\Rightarrow y^3=-x^2y^2-2xy$

PT (2)$\Leftrightarrow 2x^2y+2y^2=-4x$

$\Leftrightarrow 2x^2y+y(xy^2+3x^2)=-4x$

$\Leftrightarrow x[2xy+y(y^2+3x)]=-4x$

$\Leftrightarrow x(y^3+5xy)=-4x$

$\Leftrightarrow x=0$ hoặc $y^3+5xy=-4$

Nếu $x=0$ thì dễ tìm $y=0$

Nếu $y^3+5xy=-4$

$\Leftrightarrow -x^2y^2-2xy+5xy=-4$

$\Leftrightarrow -(xy)^2+3xy+4=0$

$\Leftrightarrow (4-xy)(xy+1)=0$

$\Leftrightarrow xy=4$ hoặc $xy=-1$

Nếu $xy=4$ thì:

$y^3=-4-5xy=-24\Rightarrow y=\sqrt[3]{-24}$

$x^3=\frac{y^3+4xy}{3}=\frac{-8}{3}\Rightarrow x=\sqrt[3]{\frac{-8}{3}}$ (tm)

Nếu $xy=-1$ thì:

$y^3=-4-5xy=1\Rightarrow y=1$

$x^3=\frac{y^3+4xy}{3}=-1\Rightarrow x=-1$ (tm)

Vậy..........

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
AD
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết