Những câu hỏi liên quan
H24
Xem chi tiết
NL
29 tháng 1 2021 lúc 14:34

Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)

So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)

\(\Leftrightarrow m=3\)

Bình luận (1)
H24
Xem chi tiết
NT
29 tháng 1 2024 lúc 22:10

1: Để hệ luôn có nghiệm thì \(\dfrac{3}{2m-1}\ne\dfrac{2m+1}{5}\)

=>\(\left(2m+1\right)\left(2m-1\right)\ne15\)

=>\(4m^2-1\ne15\)

=>\(4m^2\ne16\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

2: Để hệ vô nghiệm thì \(\dfrac{3}{2m-1}=\dfrac{2m+1}{5}=\dfrac{12}{2}=6\)

=>\(\left\{{}\begin{matrix}2m-1=\dfrac{1}{2}\\2m+1=30\end{matrix}\right.\)

=>\(m\in\varnothing\)

Bình luận (0)
VL
Xem chi tiết
VL
20 tháng 1 2021 lúc 21:19

giúp mik đc ko, mikk cần gấp

hihi

Bình luận (0)
NT
20 tháng 1 2021 lúc 21:49

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)

Bình luận (1)
TH
20 tháng 1 2021 lúc 21:55

\(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(m-1\right)x-m+mx=2\\y=m-mx\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}mx-x-m+mx=2\\y=m-mx\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2mx-x=2+m\\y=m-mx\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\left(2m-1\right)=2+m\\y=m-mx\end{matrix}\right.\)

Hpt có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2+m}{2m-1}\\y=m-m.\dfrac{2+m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{2+m}{2m-1}\\y=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Vậy hpt có nghiệm duy nhất (x; y) = ...

Ta có: x + y > 0

\(\Leftrightarrow\) \(\dfrac{m^2-2m+2}{2m-1}>0\)

\(\Leftrightarrow\) \(\dfrac{\left(m-1\right)^2+1}{2m-1}\) > 0

\(\Leftrightarrow\) 2m - 1 > 0 (vì (m - 1)2 + 1 > 0 với mọi m)

\(\Leftrightarrow\) 2m > 1

\(\Leftrightarrow\) m > \(\dfrac{1}{2}\)

Kết hợp với m \(\ne\) \(\dfrac{1}{2}\) ta có: m > \(\dfrac{1}{2}\) thì hpt có nghiệm duy nhất (x;y) thỏa mãn x + y > 0

Vậy m > \(\dfrac{1}{2}\)

Chúc bn học tốt! (Chắc đúng :D)

Bình luận (0)
NO
Xem chi tiết
NL
5 tháng 3 2020 lúc 13:58

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

Bình luận (0)
 Khách vãng lai đã xóa
NL
5 tháng 3 2020 lúc 14:01

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
MY
14 tháng 11 2021 lúc 21:39

\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\left(1\right)\\m^2x-y=m^2-3m\end{matrix}\right.\)

\(\Rightarrow\left(m^2+2m+1\right)x=m^2-m-2\)

\(\Rightarrow x=\dfrac{m^2-m-2}{m^2+2m+1}\left(m\ne-1\right)\)

\(\Rightarrow x=1+\dfrac{-3m-3}{m^2+2m+1}=1+\dfrac{-3\left(m+1\right)}{\left(m+1\right)^2}=1+\dfrac{-3}{m+1}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow y=2m-2-\left(2m+1\right)\left(1-\dfrac{3}{m+1}\right)\)

\(\Rightarrow y=\dfrac{3m}{m+1}=3+\dfrac{-1}{m+1}\)

\(\Rightarrow x,y\in Z\left(m\in Z\right)\Leftrightarrow\left\{{}\begin{matrix}m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\m+1\inƯ\left(1\right)=\left\{\pm1\right\}\end{matrix}\right.\)

\(\Rightarrow m+1=\pm1\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
NM
Xem chi tiết
TG
21 tháng 1 2022 lúc 22:11

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-m+6}{m-3}\\x=\dfrac{m}{3\left(m-3\right)}\end{matrix}\right.\)

Để HPT có nghiệm thì m ≠ 3

Có: x + y = 2

\(\Leftrightarrow\dfrac{-m+6}{m-3}+\dfrac{m}{3\left(m-3\right)}=2\)

\(\Leftrightarrow\dfrac{-3m+18+m}{3\left(m-3\right)}=2\)

\(\Leftrightarrow\dfrac{-2m+18}{3\left(m-3\right)}=2\)

\(\Leftrightarrow\dfrac{-m+9}{3\left(m-3\right)}=1\)

<=> -m + 9 = 3m - 9

<=> -4m + 18 = 0

\(\Leftrightarrow m=\dfrac{18}{4}\) (t/m)

Bình luận (0)
CN
Xem chi tiết
LL
10 tháng 4 2021 lúc 20:28

khi m=2 ta có hệ pt:

\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x+\dfrac{2}{3}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x=\dfrac{7}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)

vậy khi m=2 thì hệ pt có nghiệm duy nhất\(\left\{\dfrac{2}{3};\dfrac{5}{3}\right\}\)

Bình luận (0)
NT
10 tháng 4 2021 lúc 20:30

a) Thay m=2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=3-2y=3-2\cdot\dfrac{2}{3}=\dfrac{5}{3}\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{5}{3};\dfrac{2}{3}\right)\)

Bình luận (1)
DK
Xem chi tiết
MY
12 tháng 2 2022 lúc 23:01

\(a,\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m^2\\x-my=m+1\end{matrix}\right.\)

\(\Leftrightarrow m^2x-x=2m^2-m-1\Leftrightarrow x\left(m^2-1\right)=2m^2-m-1\)

\(ycầuđềbài\Leftrightarrow m^2-1\ne0\Leftrightarrow m\ne\pm-1\)

\(b,\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2-m-1}{m^2-1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{m^2-1}=\dfrac{2m+1}{m+1}=2+\dfrac{-2}{m+1}\\y=mx-2m=\dfrac{m\left(2m+1\right)-2m^2-2m}{m+1}=\dfrac{-m}{m+1}=-1+\dfrac{1}{m+1}\end{matrix}\right.\)

\(\left(x;y\right)\in Z\Leftrightarrow\left\{{}\begin{matrix}m\ne\pm1\\m+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\m+1\inƯ\left(1\right)=\left\{1;-1\right\}\end{matrix}\right.\)

\(\Rightarrow m=0;m=-2\)

Bình luận (0)
KR
Xem chi tiết
NL
6 tháng 2 2021 lúc 22:35

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

Bình luận (0)
NL
6 tháng 2 2021 lúc 22:41

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

Bình luận (0)