Rút gọn : B=(-5)\(^0\)+(-5)\(^1\)+(-5)\(^{^2}\)+(-5)\(^3\)+.......+(-5)\(^{2016}\)+(-5)\(^{2017}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
rút gọn b = -5 mũ 0 + 5 mũ 1 + -5 mũ 2 + -5 mũ 3 + chấm chấm chấm + -5 mũ 2016 + 5 mũ 2017
rối quá :)
B = (-5)0 + 51 + (-5)2 + 53 + ... + (-5)2016 + 52017
B = 1 + 51 + 52 + 53 + ... + 52016 + 52017
5B = 5 + 52 + 53 + ... + 52016 + 52017
5B - B = (5 + 52 + 53 + ... + 52016 + 52017) - (1 + 51 + 52 + 53 + ... + 52016 + 52017)
4B = 52017 - 1
B = \(\dfrac{5^{2017}-1}{4}\)
Rút gọn \(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2016}+\left(-5\right)^{2017}\)
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2017}\)
\(-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)
\(-6B=\left(-5\right)^{2017}-1\)
\(B=\frac{\left(-5\right)^{2017}-1}{-6}\)
Ta có : B = (-5)^0 + (-5)^1 + ......+ (-5)^2017
(-5)B = (-5)^1 + (-5)^2 + .......+ (-5)^2018
(-4)B = (-5)^0- (-5)^2018
B = 1 - (-5)^2018 / (-4)
Nếu có sai sót gì mong các bạn bỏ qua
\(-5B=\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2018}\)
\(-4B=\left(-5\right)^{2018}-\left(-5\right)^0\)
\(\Rightarrow B=\frac{\left(-5\right)^{2018}-\left(-5\right)^0}{-4}\)
1.Rút gọn: B=(-5)^0+(-5)^1+(-5)^2+(-5)^3+...+(-5)^2017
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)
\(\Leftrightarrow-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+\left(-5\right)^4+...+\left(-5\right)^{2018}\)
\(\Leftrightarrow-5B-B=\left(-5\right)^{2018}-\left(-5\right)^0\)
\(\Leftrightarrow-6B=\left(-5\right)^{2018}-1\)
\(\Leftrightarrow B=\frac{\left(-5\right)^{2018}-1}{-6}\)
Bạn ơi vì sao ở dòng 3 lại là (-5)^2017 - (-5)^0 vậy??
Rút gọn:
B = ( -5)0 + (-5)1 + (-5)2 + (-5)3 + ...+ (-5)2016 + (-5)2017
\(B=1-5+5^2-5^3+...+5^{2016}-5^{2017}\) (1)
\(\Rightarrow5B=5-5^2+5^3-5^4+...+5^{2017}-5^{2018}\) (2)
Cộng vế với vế của (1) và (2):
\(6B=1+5-5+5^2-5^2+5^3-5^3+...+5^{2017}-5^{2017}-5^{2018}\)
\(\Rightarrow6B=1-5^{2018}\)
\(\Rightarrow B=\dfrac{1-5^{2018}}{6}\)
B=(-5)^0+(-5)^1+(-5)^2+(-5)^3+...+(-5)^2016+(-5)^2017
Rút gọn A = 165.\(\left(4^{2017}+4^{2016}+4^{2015}+...+4^2+5\right)+55\)
Ta có: \(B=4^{2017}+4^{2016}+...+4^2+4^1+4^0\)
\(\Leftrightarrow4\cdot B=4^{2018}+4^{2017}+...+4^3+4^2+4^1\)
\(\Leftrightarrow3\cdot B=4^{2018}-1\)
\(\Leftrightarrow A=165\cdot\dfrac{4^{2018}-1}{3}+55\)
\(\Leftrightarrow A=4^{2018}\)
thục hiện phép thính \(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3......+\left(-5\right)^{2016}+\left(-5\right)^{2017}\)
hãy viết thu gọn tổng sau
D= \(1+5^2+5^3+...+5^{2016}+5^{2017}\)
Ta có : D = 1 + 5 + 52 + ...... + 52017
=> 5D = 5 + 52 + 53 + ...... + 52018
=> 5D - D = 52018 - 1
=> 4D = 52018 - 1
=> D = \(\frac{5^{2018}-1}{4}\)
5D=5+.....+52018
5D-D=5+......52018-1-52-......-52017
4D=52018-1
D=52018-1/4
\(D=1+5+5^2+....+5^{2017}\)
\(\Rightarrow5D=5+5^2+5^3+...+5^{2018}\)
\(\Rightarrow5D-D=5^{2018}-1\)
\(\Rightarrow4D=5^{2018}-1\)
\(\Rightarrow D=\frac{5^{2018}-1}{4}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
cs ng làm đung r
đag định lm