Cho Δ MNP cân tại M. Kẻ MH ⊥ NP (H ∈ NP)
d,chứng minh DE, PD và MH cùng đi qua 1 điểm
Cho tam giác MNP cân tại M, MN = 5cm, NP= 4cm. Kẻ MH vuông góc NP tại H
a) Chứng minh và H là trung điểm của NP
b) Tính MH (làm trong đến chữ số thập phân thứ nhất)
c) Kẻ đường thẳng d vuông góc với MN tại N, d cắt đường thẳng MH tại I. Chứng minh: tam giác MNI=MPI
d) Kẻ NE vuông góc với MP tại E. Chứng minh NP là tia phân giác của góc E
a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI
Cho tam giác MNP cân tại M, kẻ MH NP (H NP).
a/ Chứng minh ∆MHN = ∆MHP.
b/ Chứng minh H là trung điểm của NP.
c/ Chứng minh MH là tia phân giác của góc NMP
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP
Cho ∆MNP vuông tại M, kẻ đường cao MH (H∈NP) a) Chứng minh: ∆HNM∽∆MNP b) Cho biết MN=6cm, MP=8cm. Tính NP, MH, HN, HP c) Kẻ tia phân giác MD (D∈NP). Trong ∆MDN kẻ tiếp tia phân giác DE (E∈MN) trong ∆MDN kẻ tia phân giác DF (F∈MP) chứng minh: EM/EN×DN/DP×FP/FM=1
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D
cho Δ MNP vuông tại M (MN<MP) đường cao MH (H thuộc NP)
a)chứng minh:ΔMNP đồng dạng ΔHNM và MN22=NNHNH.NNMNM
b)chứng minh: MH2=HN.HP
c)PD là tia phân giác của góc NPM. Chứng minh:DN.HM=DM.MN
a: Xét ΔMNP vuông tại M và ΔHNM vuông tạiH có
góc N chung
=>ΔMNP đồng dạng với ΔHNM
=>NM/NH=NP/NM
=>NM^2=NH*NP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH^2=HN*HP
c: DN/DM=PN/MP=MN/HM
=>DN*HM=DM*MN
Cho tam giác MNP cân tại M có M<90°,từ M kẻ MH vuông góc với NP(H thuộc NP)
a) chứng minh tam giác MNH = tam giác MPH
b) tính độ dài cạnh MN, biết MH = 4cm và NH = 3cm
c) kẻ ND vuông góc với MP tại D,PE vuông góc với MN tại E. Gọi I là giao điểm của ND và PE.chứng minh MI là phân giác của góc NMP
d) chứng minh 3 điểm M,I,H thẳng hàng
Ghi đầy đủ mà nó hiện lên có 1 khúc,khóc ẻ
Cho tam giác MNP vuông tại M (MN-MP), đường cao MH. Gọi D và E lần lượt là hình chiếu của H trên MN và MP. 2/ Chứng minh: MD.MN =ME, MP MN² b/ Chứng minh: MP4 PH và chứng minh MH = NPNDPE NH có Qua M kẻ đường vuông góc với DE cắt NP tại K. Chứng minh Kỉ là trung điểm Nh d/ Cho góc P=a; NP = a. Từ M kẻ đường vuông góc với MK cắt tia PN tại I. Chứng minh PI a.(cos 2a+1) 2cos 2a
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
Bài 1: Cho ∆ABC vuông tại A có AB = 3cm, BC = 5cm.
a.) Tính AC.
b.) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc với BC tại E. Chứng minh ∆ABD = ∆EBD.
c.) Tia ED cắt tia BA tại M. Chứng minh ∆MDC cân
. Bài 2: Cho ∆MNP cân tại M ( M < 900 ). Kẻ MH vuông góc với NP tại H
a.) Chứng minh ∆MHN = ∆MHP và H là trung điểm của NP.
b.) Kẻ đường thẳng d vuông góc với MN tại N, d cắt đường thẳng MH tại I. Chứng minh : ∆MNI = ∆MPI.
c.) Kẻ NE vuông góc với MP tại E. Chứng minh: NP là tia phân giác của góc ENI.
Bài 1 :
Vì mình kh pk CTV nên hình không lên đây được , bạn vào thống kê hỏi đáp của mình xem nhé
#hoc_tot#
:>>>
Hình đó nha bạn
Vào TKHĐ của mình là thấy nhé
#hoc_tot#
:>>>
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP