Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 6 2019 lúc 14:27

b) Gọi  x 1 ; x 2  lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x 1 2 + x 2 2  - x 1 x 2  = x 1 + x 2 2 - 3x1 x2 = 4 m 2  + 3(4m + 4)

Theo bài ra:  x 1 2 + x 2 2  -  x 1   x 2 =13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

∆ m  = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm  x 1 ;  x 2  thỏa mãn điều kiện  x 1 2 + x 2 2  -  x 1   x 2  = 13

Bình luận (0)
QT
Xem chi tiết
NT
7 tháng 8 2021 lúc 23:03

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

Bình luận (0)
BL
Xem chi tiết
H24
1 tháng 4 2023 lúc 13:09

\(x^2+2\left(m+1\right)+4m-4=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)

\(\Leftrightarrow4m^2+8m+4+4m-4=0\)

\(\Leftrightarrow4m^2+12m=0\)

\(\Leftrightarrow4m\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)

Bình luận (0)
PT
Xem chi tiết
VN
Xem chi tiết
NT
5 tháng 4 2021 lúc 21:56

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

Bình luận (0)
H24
5 tháng 4 2021 lúc 21:58

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

Bình luận (1)
NT
5 tháng 4 2021 lúc 22:00

2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)

a) Ta có: \(x_1+x_2=-1\)

\(\Leftrightarrow-2m=-1\)

hay \(m=\dfrac{1}{2}\)

b) Ta có: \(x_1^2+x_2^2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)

\(\Leftrightarrow4m^2-4m+2-13=0\)

\(\Leftrightarrow4m^2-4m+1-12=0\)

\(\Leftrightarrow\left(2m-1\right)^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)

Bình luận (1)
H24
Xem chi tiết
NT
17 tháng 4 2023 lúc 18:37

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

Bình luận (0)
HN
Xem chi tiết
NL
27 tháng 7 2021 lúc 22:21

Phương trình có 2 nghiệm khi \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=3\)

\(\Rightarrow\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=3\)

\(\Rightarrow\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2=5\)

\(\Rightarrow\left(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}\right)^2=5\)

\(\Rightarrow\left(m^2-2\right)^2=5\)

\(\Rightarrow m^2=2+\sqrt{5}\)

\(\Rightarrow m=\pm\sqrt{2+\sqrt{5}}\)

Bình luận (2)
RB
Xem chi tiết
NT
26 tháng 5 2022 lúc 14:36

\(\text{Δ}=\left(4m+1\right)^2-8\left(m-4\right)\)

\(=16m^2+8m+1-8m+32\)

\(=16m^2+33>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Ta có: \(\left|x_1-x_2\right|=17\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=17\)

\(\Leftrightarrow\sqrt{\left(4m+1\right)^2-4\cdot2\cdot\left(m-4\right)}=17\)

\(\Leftrightarrow\sqrt{16m^2+8m+1-8m+32}=17\)

\(\Leftrightarrow16m^2+33=289\)

=>m=4 hoặc m=-4

Bình luận (0)
MB
Xem chi tiết
NQ
9 tháng 3 2018 lúc 19:38

a, Khi m = 2

pt trở thành : x^2 - 6x + 4 = 0

<=> (x^2-6x+9) - 5 = 0

<=> (x-3)^2 = 5

<=> x=3+-\(\sqrt{5}\)

Tk mk nha

Bình luận (0)
NC
27 tháng 3 2020 lúc 22:36

b) Câu hỏi của Mavis Dracula - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
23 tháng 2 2022 lúc 14:53

undefined

Bình luận (0)