a) x(a+b)+a+b
b) ax+ay+2x+2y
c) x2-2y+xy-2x
d) 10ax-5ay-2x+y
1. ab ( x - 3 ) - a bình ( x - 3 )
2 . ax + ay + bx + by
3. ax + ay - 2x - 2y
4. 2x - 2y + ax - ay
5. 10ax - 5ay - 2x + y
mình cảm ơn trước ạ
`ab(x-3) -a^2(x-3)`
`=(x-3)(a^2-ab)`
__
`ax+ay+bx+by`
`=a(x+y)+b(x+y)`
`=(x+y)(a+b)`
__
`ax+ay -2x-2y`
`=(ax+ay)-(2x+2y)`
`=a(x+y)-2(x+y)`
`=(x+y)(a-2_`
__
`2x-2y +ax-ay`
`=2(x-y)+a(x-y)`
`=(x-y)(2+a)`
__
`10ax -5ay -2x+y`
`= 5a(2x-y) -(2x-y)`
`=(2x-y)(5a-1)`
1: =(x-3)(ab-a^2)
=a(b-a)(x-3)
2: =a(x+y)+b(x+y)
=(x+y)(a+b)
3: =a(x+y)-2(x+y)
=(x+y)(a-2)
4: =2(x-y)+a(x-y)
=(x-y)(a+2)
5: =5a(2x-y)-(2x-y)
=(2x-y)(5a-1)
1) \(ab\left(x-3\right)-a^2\left(x-3\right)=a\left(x-3\right)\left(b-a\right)\)
2) \(ax+ay+bx+by=\left(a+b\right)\left(x+y\right)\)
3) \(ax+ay-2x-2y=\left(a-2\right)\left(x+y\right)\)
4) \(2x-2y+ax-ay=\left(2+a\right)\left(x-y\right)\)
5) \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(x-y\right)\)
Phân tích các đa thức sau thành nhân tử ( phương pháp nhóm các hạng tử )
1) x - y - a( x - y )
2) a - b + x( a - b )
3) a( x - y ) - x + y
4) x( a - b ) - a + b
5) ax + ay + bx + by
6) ax + ay - bx - by
7) - 2x - 2y + ax + ay
8) x2 - xy - 2x + 2y
9) 10ax - 5ax - 5ay + 2x - y
10) 5x2 y + 5xy2 - a2 x + a2 y
Các bạn giải nhanh cho mình 10 câu này nha. Mình đag cần gấp
1) x - y - a(x - y) = (x - y) - a(x - y) = (1 - x)(x - y)
2) a - b + x(a - b) = (a - b) + x(a - b) = (1 + x)(a - b)
3) a(x - y) - x + y = a(x - y) - (x - y) = (a - 1)(x - y)
4) x(a - b) - a + b = x(a - b) - (a - b) = (x - 1)(a - b)
5) ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
6) ax + ay - bx - by = a(x + y) - b(x + y) = (a - b)(x + y)
7) - 2x - 2y + ax + ay = -2(x + y) + a(x + y) = (a - 2)(x + y)
8) x2 - xy - 2x + 2y = x(x - y) - 2(x - y) = (x - 2)(x - y)
Sorry nha, giờ mình chỉ rảnh làm 8 câu thôi
Bài 4: đặt nhân tử chung
c)x(x-2)+(x-2)2
d) 2x(x-y)2-5(y-x)
Bài 5 :
a) x2-6x-2xy+12y
b) 10ax-5ay-2x+y
c)x4+x3y-x-y
d) x3+2x2-4x-8
e) xy-5x-y2+5y
f) ax-bx-2cx-2a+2b+4c
g) 5x2y+5xy2-b2x-b2y
h) 4x3-4x2-9x+9
Bài 4
c) x(x - 2) + (x - 2)²
= (x - 2)(x + x - 2)
= (x - 2)(2x - 2)
= 2(x - 2)(x - 1)
d) 2x(x - y)² - 5(y - x)
= 2x(x - y)² + 5(x - y)
= (x - y)(2x + 5)
Bài 5
a) x² - 6x - 2xy + 12y
= (x² - 6x) - (2xy - 12y)
= x(x - 6) - y(x - 6)
= (x - 6)(x - y)
b) 10ax - 5ay - 2x + y
= (10ax - 5ay) - (2x - y)
= 5a(2x - y) - (2x - y)
= (2x - y)(5a - 1)
c) x⁴ + x³y - x - y
= (x⁴ + x³y) - (x + y)
= x³(x + y) - (x + y)
= (x + y)(x³ - 1)
= (x + y)(x - 1)(x² + x + 1)
d) x³ + 2x² - 4x - 8
= (x³ + 2x²) - (4x + 8)
= x²(x + 2) - 4(x + 2)
= (x + 2)(x² - 4)
= (x + 2)(x + 2)(x - 2)
= (x + 2)²(x - 2)
e) xy - 5x - y² + 5y
= (xy - 5x) - (y² - 5y)
= x(y - 5) - y(y - 5)
= (y - 5)(x - y)
f) ax - bx - 2cx - 2a + 2b + 4c
= (ax - bx - 2cx) - (2a - 2b - 4c)
= x(a - b - 2c) - 2(a - b - 2c)
= (a - b - 2c)(x - 2)
g) 5x²y + 5xy² - b²x - b²y
= (5x²y + 5xy²) - (b²x + b²y)
= 5xy(x + y) - b²(x + y)
= (x + y)(5xy - b²)
h) 4x³ - 4x² - 9x + 9
= (4x³ - 4x²) - (9x - 9)
= 4x²(x - 1) - 9(x - 1)
= (x - 1)(4x² - 9)
= (x - 1)(2x - 3)(2x + 3)
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
h: \(=\left(a-1-b\right)\left(a-1+b\right)\)
Phân tích đa thức sau bằng phương pháp nhóm hạng tử
1) x ( a - b ) + a - b ; 2) x - y - a( x - y ) ; 3) a( x + y ) - x - y ; 4) x( a - b ) - a + b ; 5) x\(^2\) + xy - 2x - 2y
6) 10ax - 5ay + 2x - y ; 7) 2a\(^{^2}\) x - 5by - 5a\(^2\) y + 2bx ; 8) 2ax\(^2\)- bx\(^2\) - 2ax + bx + 4a - 2b ; 9) 2ax - bx + 3cx - 2a + b - 3c
10) ax - bx - 2cx - 2a + 2b + 4c
Giúp mik đi
1, x(a-b)+a-b 2, x-y-a(x-y) 3, a(x+y)-x-y 4, x(a-b)-a+b 5, x2+xy-2x-2y 6, 10ax-5ay+2x-y
= x(a-b)+(a-b) =(x-y)-a(x-y) =a(x+y)-(x+y) =x(a-b)-(a-b) =(x2+xy)-(2x+2y) =(10ax+2x)-(5ay+y)
=(a-b)(x+1) =(x-y)(1-a) =(x+y)(a-1) =(a-b)(x-1) =x(x+y)-2(x+y) =2x(5a+1)-y(5a+1)
=(x+y)(x-2) =(5a+1)(2x-y)
7, 2a2x-5by-5a2y+2bx 8, 2ax2-bx2-2ax+bx+4a-2b 9, 2ax-bx+3cx-2a+b-3c 10, ax-bx-2cx-2a+2b+4c
=(2a2x+2bx)-(5by+5a2y) =(2ax2-bx2)-(2ax-bx)+(4a-2b) =(2ax-2a)-(bx-b)+(3cx-3c) =(ax-2a)-(bx-2b)-(2cx-4c)
=2x(a2+b)-5y(b+a2) =x2(2a-b)-x(2a-b)+2(2a-b) =2a(x-1)-b(x-1)+3c(x-1) =a(x-2)-b(x-2)-2c(x-2)
=(a2+b)(2x-5y) =(2a-b)(x2-x+2) =(x-1)(2a-b+3c) =(x-2)(a-b-2c)
phân tích cac da thuc sau thanh nhan tu:
a) x^3-2x^2 +2x -13
b) x^2y+xy +x +1
c) ax+by+ay+bx
d) x^2 -(a+b)x +ab
e) x^2y +xy^2 -x-y
f) ax^2 +ay-bx^2-by
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
a)x^2(x-3)-4x+12 b)2a(x+y)-x+y c)6x^2-12x-7x+14 d)xy-y^2-3x+3y f)x^2y+xy^2-4x-4y g)10ax-5ay-7x+14 j)a^3-a^2+9a-9(tính nhân tử chung)
a: \(x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
b: \(2a\left(x+y\right)+x+y=\left(x+y\right)\left(2a+1\right)\)
c: \(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(6x-7\right)\)
a) 5x-5y+ax-ay b) ax+ay+bx+by c) x2+x+ax+a
d) x2y+xy2+xy2-3x-3y e) x2y+xy-x-1 f) x2+2x-2x-4
g) x2+6x-y2+9 h) x2-y2+10x+25 i) x2-8x-24y2+16
\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)
bn nào viết rõ hơn giùm mik đc ko.
(a^2+b^2)(x^2+y^2)=(ax+by)^2
<=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2
<=> a^2y^2 + b^2x^2 = 2abxy
<=> a^2y^2 + b^2x^2 - 2abxy = 0
<=> (ay - bx)^2 = 0
=> ay - bx = 0
=> ay = bx
=> a/x = b/y ( x,y khác 0)
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)