Những câu hỏi liên quan
HA
Xem chi tiết
NL
21 tháng 3 2023 lúc 4:45

Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)

\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)

\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)

\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)

Cộng vế:

\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)

\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 12 2018 lúc 21:00

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)

Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên

Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)

\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)

Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )

Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

Bình luận (0)
NN
Xem chi tiết
NC
11 tháng 11 2018 lúc 9:30

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

Bình luận (0)
H24
Xem chi tiết
GD
21 tháng 5 2021 lúc 7:35

Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)

Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)

Lại có: \(1\le a\le2,1\le b\le2\)

\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)

\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)

Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)

Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)

\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)

Bình luận (0)
LD
Xem chi tiết
TG
Xem chi tiết
ND
Xem chi tiết
DQ
7 tháng 12 2020 lúc 19:06

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\le7\)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Khi đó ta có \(\left(a-b\right)\left(b-c\right)\ge0\Leftrightarrow ab+bc\ge b^2+ca\)

\(\Leftrightarrow\frac{a}{c}+1\ge\frac{a}{b}+\frac{b}{c};\frac{a}{c}+1\ge\frac{c}{b}+\frac{b}{a}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\le2+2\left(\frac{a}{c}+\frac{c}{a}\right)\)

Ta cần chứng minh \(2\left(\frac{a}{c}+\frac{c}{a}\right)\le5\). Tức là chứng minh \(\left(\frac{2a}{c}-1\right)\left(1-\frac{2c}{a}\right)\le0\)( *)

Bất đẳng thức (*) luôn đúng vì \(2\ge a\ge c\ge1\Rightarrow\frac{a}{c}\ge1;\frac{c}{a}\ge\frac{1}{2}\). => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
NH
6 tháng 12 2018 lúc 21:40

ban dung co khoe

Bình luận (0)
KS
Xem chi tiết
HH
3 tháng 2 2018 lúc 22:41

muộn rồi để lúc khác tôi làm cho

Bình luận (8)
MS
4 tháng 2 2018 lúc 7:46

Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)

Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)

cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)

\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)

Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)

chứng minh tương tự suy ra đpcm

Bình luận (11)
H24
4 tháng 2 2018 lúc 20:39

Ta có: 0≤a≤b≤c≤1⇔{1−a≥01−b≥00≤a≤b≤c≤1⇔{1−a≥01−b≥0

⇒(1−a)(1−b)≥0⇔1(1−b)−a(1−b)≥0⇒(1−a)(1−b)≥0⇔1(1−b)−a(1−b)≥0
⇒1−b−a+ab≥0⇔1+ab≥a+b⇒1−b−a+ab≥0⇔1+ab≥a+b

Tiếp tục chứng minh ta có: {1≥c0≤a≤b⇔ab≥0{1≥c0≤a≤b⇔ab≥0

cộng theo vế: 1+ab+1+ab≥a+b+c+01+ab+1+ab≥a+b+c+0

⇒2(1+ab)≥a+b+c⇒2(1+ab)≥a+b+c

Ta có: cab+1=2c2(ab+1)≤2ca+b+ccab+1=2c2(ab+1)≤2ca+b+c (1)

Bình luận (0)